Free Access

   

Table 2:

Line identification of detected emissions.
(a) January 28, 2008; H2O
Transition Wavenumber Wavelength Flux g-factor1 Atmospheric transmittance
($\nu_{1}'$, $\nu_{2}'$, $\nu_{3}'$) J'Ka' Kc'-($\nu_{1}''$, $\nu_{2}''$,$\nu_{3}''$) J''Ka'' Kc'' [cm-1] [Å] [W m-2] [W molecule-1]  
(101)11 1-(001)20 2 3459.53 28 905.67 (8.60 $\pm $ 1.27) $\times$ 10-20 $2.48\times10^{-27}$ 0.81
(101)43 1-(100)53 2 3459.49 28 905.97 * $5.29\times10^{-28}$ 0.81
(101)42 2-(100)52 3 3456.45 28 931.44 (3.90 $\pm $ 1.08) $\times$ 10-20 $4.29\times10^{-27}$ 0.32
(101)30 3-(001)31 2 3455.43 28 939.99 (1.77 $\pm $ 0.82) $\times$ 10-20 $5.65\times10^{-28}$ 0.81
(101)21 1-(001)22 0 3454.69 28 946.17 (9.28 $\pm $ 0.81) $\times$ 10-20 $3.70\times10^{-27}$ 0.80
(200)11 0-(001)22 1 3453.30 28 957.81 (1.41 $\pm $ 0.08) $\times$ 10-19 $7.39\times10^{-27}$ 0.80
(101)20 2-(100)32 1 3453.15 28 959.03 (1.34 $\pm $ 0.09) $\times$ 10-19 $5.62\times10^{-27}$ 0.88
(200)11 0-(001)11 1 3450.29 28 983.04 (6.10 $\pm $ 0.87) $\times$ 10-20 $1.03\times10^{-26}$ 0.21
(110)32 1-(010)43 2 3449.78 28 987.36 (2.50 $\pm $ 0.77) $\times$ 10-20 $6.46\times10^{-28}$ 0.73
(200)22 0-(001)22 1 3445.89 29 020.12 (3.22 $\pm $ 0.90) $\times$ 10-20 $2.11\times10^{-27}$ 0.49
(200)21 2-(100)32 1 3412.92 29 300.39 (1.10 $\pm $ 0.08) $\times$ 10-19 $4.68\times10^{-27}$ 0.80
(101)31 3-(001)40 4 3411.62 29 311.61 (7.92 $\pm $ 0.66) $\times$ 10-20 $3.27\times10^{-27}$ 0.94
(201)11 1-(200)11 0 3405.42 29 364.95 (5.98 $\pm $ 0.72) $\times$ 10-20 $1.78\times10^{-27}$ 0.91
(201)22 1-(200)22 0 3405.39 29 365.21 * $1.78\times10^{-28}$ 0.90
(101)11 1-(001)22 1 3404.24 29 375.11 (3.82 $\pm $ 0.77) $\times$ 10-20 $1.65\times10^{-27}$ 0.42
(200)11 1-(001)21 2 3403.23 29 383.84 (1.26 $\pm $ 0.09) $\times$ 10-19 $4.29\times10^{-27}$ 0.76
(200)10 1-(001)20 2 3399.37 29 417.23 (4.01 $\pm $ 0.08) $\times$ 10-19 $1.36\times10^{-26}$ 0.82
(300)21 2-(101)11 1 3389.14 29 506.05 (1.71 $\pm $ 0.63) $\times$ 10-20 $2.44\times10^{-28}$ 0.94
(201)00 0-(200)10 1 3388.77 29 509.23 (8.34 $\pm $ 0.66) $\times$ 10-20 $2.65\times10^{-27}$ 0.94
(101)40 4-(001)51 5 3387.54 29 519.94 (4.28 $\pm $ 0.78) $\times$ 10-20 $1.47\times10^{-27}$ 0.89
(201)21 1-(101)20 2 3385.14 29 540.66 (2.62 $\pm $ 0.94) $\times$ 10-20 $7.16\times10^{-29}$ 0.58
(101)21 1-(001)32 2 3385.14 29 540.90 * $1.60\times10^{-27}$ 0.56
(200)21 2-(001)31 3 3382.10 29 567.43 (3.79 $\pm $ 0.07) $\times$ 10-19 $1.22\times10^{-26}$ 0.89
(200)20 2-(001)30 3 3378.48 29 599.08 (9.53 $\pm $ 0.76) $\times$ 10-20 $3.16\times10^{-27}$ 0.75
(101)31 3-(100) 42 22 3320.13 30 119.34 (6.44 $\pm $ 0.75) $\times$ 10-20 $1.38\times10^{-27}$ 0.97
(200)31 3-(001) 42 22 3319.47 30 125.29 (5.06 $\pm $ 0.71) $\times$ 10-20 $5.10\times10^{-28}$ 0.97
(101)32 2-(100) 43 12 3319.12 30 128.50 (2.79 $\pm $ 0.57) $\times$ 10-20 $1.21\times10^{-27}$ 0.96
(101)42 2-(001) 53 32 3308.06 30 229.17 (2.63 $\pm $ 0.82) $\times$ 10-20 $7.46\times10^{-28}$ 0.68
           
1 $T_{\rm rot}$ = 70 K. 2 In setting #2.          


(b) January 28, 2008; HCN $\nu _{3}$-band

Transition
Wavenumber Wavelength Flux g-factor3 Atmospheric transmittance
  [cm-1] [Å] [W m-2] [W molecule-1]  
R6 3331.59 30 015.74 (5.08 $\pm $ 1.01) $\times$ 10-20 7.24 $\times$ 10-25 0.97
R5 3328.78 30 041.07 (4.22 $\pm $ 0.58) $\times$ 10-20 1.02 $\times$ 10-24 0.94
R4 3325.94 30 066.64 (5.77 $\pm $ 1.37) $\times$ 10-20 1.33 $\times$ 10-24 0.90
R3 3323.09 30 092.47 (2.68 $\pm $ 0.71) $\times$ 10-20 1.53 $\times$ 10-24 0.59
R2 3320.22 30 118.48 (4.71 $\pm $ 0.62) $\times$ 10-20 1.54 $\times$ 10-24 0.97
R1 3317.33 30 144.74 (3.43 $\pm $ 2.16) $\times$ 10-20 1.27 $\times$ 10-24 0.86
P2 3305.54 30 252.21 (7.12 $\pm $ 0.73) $\times$ 10-20 1.45 $\times$ 10-24 0.96
P3 3302.55 30 279.21 (7.85 $\pm $ 0.89) $\times$ 10-20 1.89 $\times$ 10-24 0.96
P4 3299.53 30 307.37 (7.40 $\pm $ 0.81) $\times$ 10-20 2.02 $\times$ 10-24 0.93
P7 3290.35 30 391.91 (3.20 $\pm $ 0.78) $\times$ 10-20 1.16 $\times$ 10-24 0.90
P8 3287.25 30 420.58 (2.90 $\pm $ 0.70) $\times$ 10-20 8.01 $\times$ 10-25 0.95

3 $T_{\rm rot} = 54$ K.
Flux values listed in the 4th column are calibrated but not corrected for the telluric absorption. The g-factors listed in the 5th
column are calculated for the observational conditions. Field of view of the aperture is $0.2\hbox {$^{\prime \prime }$ }\times \sim 0.8\hbox {$^{\prime \prime }$ }$. The * mark indicates
that the line is blended with the line above.

(c) January 28, 2008; C2H2 $\nu _{3}$-band
Transition Wavenumber Wavelength Flux g-factor4 Atmospheric transmittance
  [cm-1] [Å] [W m-2] [W molecule-1]  
R3 3304.17 30267.30 (1.73 $\pm $ 0.61) $\times$ 10-20 1.03 $\times$ 10-24 0.95
P3 3287.76 30418.40 (3.22 $\pm $ 0.82) $\times$ 10-20 1.05 $\times$ 10-24 0.92
P5 3282.99 30462.99 (2.25 $\pm $ 0.89) $\times$ 10-20 1.27 $\times$ 10-24 0.71
4 $T_{\rm rot} = 70$ K is assumed.          


(d) February 4, 2008; H2O
Transition Wavenumber Wavelength Flux g-factor5 Atmospheric transmittance
($\nu_{1}'$,$\nu_{2}'$,$\nu_{3}'$) J'Ka' Kc'-($\nu_{1}''$,$\nu_{2}''$,$\nu_{3}''$) J''Ka'' Kc'' [cm-1] [Å] [W m-2] [W molecule-1]  
(201)11 1-(200)11 0 3405.42 29 364.95 (4.07 $\pm $ 0.78) $\times$ 10-20 1.81 $\times$ 10-27 0.85
(201)22 1-(200)22 0 3405.39 29 365.21 * 1.58 $\times$ 10-28 0.82
(200)11 1-(001)21 2 3403.23 29 383.84 (6.84 $\pm $ 0.77) $\times$ 10-20 4.63 $\times$ 10-27 0.64
(200)10 1-(001)20 2 3399.37 29 417.23 (1.98 $\pm $ 0.06) $\times$ 10-19 1.37 $\times$ 10-26 0.74
(200)22 1-(100)33 0 3394.08 29 463.10 (1.00 $\pm $ 0.06) $\times$ 10-19 1.10 $\times$ 10-26 0.63
(200)41 4-(001)41 3 3390.04 29 498.19 (3.25 $\pm $ 0.62) $\times$ 10-20 2.08 $\times$ 10-28 0.74
(101)21 2-(100)33 1 3390.02 29 498.38 * 1.47 $\times$ 10-27 0.79
(201)00 0-(200)10 1 3388.77 29 509.23 (3.68 $\pm $ 0.72) $\times$ 10-20 2.81 $\times$ 10-27 0.90
(200)21 2-(001)31 3 3382.10 29 567.43 (1.63 $\pm $ 0.05) $\times$ 10-19 1.25 $\times$ 10-26 0.86
(200)20 2-(001)30 3 3378.48 29 599.08 (3.81 $\pm $ 0.53) $\times$ 10-20 3.09 $\times$ 10-27 0.77
(200)22 1-(001)32 2 3372.76 29649.35 (9.25 $\pm $ 0.53) $\times$ 10-20 7.13 $\times$ 10-27 0.89
(210)22 1-(110)33 0 3361.03 29752.74 (2.45 $\pm $ 0.55) $\times$ 10-20 5.19 $\times$ 10-28 0.66
(200)31 3-(001)41 4 3360.99 29753.14 * 1.77 $\times$ 10-27 0.62
(200)30 3-(001)40 4 3358.92 29771.45 (8.64 $\pm $ 0.61) $\times$ 10-20 4.83 $\times$ 10-27 0.78
(201)20 2-(200)30 3 3346.99 29877.58 (6.73 $\pm $ 0.63) $\times$ 10-20 2.60 $\times$ 10-27 0.94
(200)31 2-(001)41 3 3341.17 29929.64 (2.94 $\pm $ 0.54) $\times$ 10-20 2.22 $\times$ 10-27 0.90
(200)41 4-(001)51 5 3340.95 29931.63 (2.71 $\pm $ 0.53) $\times$ 10-20 2.13 $\times$ 10-27 0.88
(201)31 3-(200)41 4 3329.42 30035.28 (1.89 $\pm $ 0.66) $\times$ 10-20 1.07 $\times$ 10-27 0.85
5 $T_{\rm rot} = 65$ K.          


(e) February 4, 2008; CH4 $\nu _{3}$-band
Transition Wavenumber Wavelength Flux g-factor6 Atmospheric transmittance
  [cm-1] [Å] [W m-2] [W molecule-1]  
R1 3038.50 32 913.67 (2.03 $\pm $ 0.78) $\times$ 10-20 1.20 $\times$ 10-24 0.32
R0 3028.75 33 019.58 (3.44 $\pm $ 0.76) $\times$ 10-20 1.46 $\times$ 10-24 0.27
6 $T_{\rm rot}$ = 70 K is assumed.          


(f) February 4, 2008; C2H6 $\nu _{7}$-band
Transition Wavenumber Wavelength Flux g-factor7 Atmospheric transmittance
  [cm-1] [Å] [W m-2] [W molecule-1]  
RQ0 2986.73 33481.43 (4.23 $\pm $ 0.60) $\times$ 10-20 2.10 $\times$ 10-24 0.91
PQ1 2983.38 33519.03 (4.51 $\pm $ 0.60) $\times$ 10-20 1.89 $\times$ 10-24 0.94
PQ2 2980.07 33556.26 (5.01 $\pm $ 1.01) $\times$ 10-20 1.71 $\times$ 10-24 0.79
PQ3 2976.77 33593.46 (2.58 $\pm $ 0.71) $\times$ 10-20 1.22 $\times$ 10-24 0.91
7 $T_{\rm rot} = 70$ K is assumed, Dello Russo et al. (2001).

(g) February 4, 2008; CH3OH $\nu _{2}$-band
Transition Wavenumber Wavelength Flux g-factor8 Atmospheric transmittance
  [cm-1] [Å] [W m-2] [W molecule-1]  
  3001.10 33 323.83 (4.80 $\pm $ 0.88) $\times$ 10-20 2.86 $\times$ 10-25 0.95
  3001.04 33 324.49 *   0.94
  2997.16 33 367.63 (5.38 $\pm $ 0.70) $\times$ 10-20   0.89
  2997.15 33 367.75 *   0.85

8 The g-factor of the $\nu _{2}$ methanol line listed here is derived from the g-factor of the methanol $\nu _{3}$-band Q-branch by comparing the intensities of these lines in cometary spectra (see text). The g-factor of the methanol $\nu _{3}$-band Q-branch is taken equal to $5.80 \times 10^{-25}$ [W molecule-1] at $T_{\rm rot} = 70$ K (DiSanti, private comm.).

Source LaTeX | All tables | In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.