Issue |
A&A
Volume 700, August 2025
|
|
---|---|---|
Article Number | A10 | |
Number of page(s) | 26 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/202453341 | |
Published online | 29 July 2025 |
NIRPS joining HARPS at ESO 3.6 m
On-sky performance and science objectives
1
Observatoire de Genève, Département d’Astronomie, Université de Genève,
Chemin Pegasi 51,
1290
Versoix,
Switzerland
2
Institut Trottier de recherche sur les exoplanètes, Département de Physique, Université de Montréal,
Montréal,
Québec,
Canada
3
Observatoire du Mont-Mégantic,
Québec,
Canada
4
European Southern Observatory (ESO),
Karl-Schwarzschild-Str. 2,
85748
Garching bei München,
Germany
5
Univ. Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
6
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte,
Campus Universitário,
Natal,
RN
59072-970,
Brazil
7
Instituto de Astrofísica de Canarias (IAC),
Calle Vía Láctea s/n,
38205
La Laguna,
Tenerife,
Spain
8
Departamento de Astrofísica, Universidad de La Laguna (ULL),
38206
La Laguna,
Tenerife,
Spain
9
Consejo Superior de Investigaciones Científicas (CSIC),
28006
Madrid,
Spain
10
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
11
Departamento de Física e Astronomia, Faculdade de Ciências, Uni-versidade do Porto, Rua do Campo Alegre,
4169-007
Porto,
Portugal
12
Department of Physics and Space Science, Royal Military College of Canada,
PO Box 17000, Station Forces,
Kingston,
ON,
Canada
13
European Southern Observatory (ESO),
Av. Alonso de Cordova 3107,
Casilla
19001,
Santiago de Chile,
Chile
14
University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München,
Scheinerstr. 1,
81679
Munich,
Germany
15
Centre of Optics, Photonics and Lasers, Université Laval,
Québec,
Canada
16
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada,
Canada
17
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciên-cias da Universidade de Lisboa,
Campo Grande,
1749-016
Lisboa,
Portugal
18
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa,
Edifício C8,
1749-016
Lisboa,
Portugal
19
Space Research and Planetary Sciences, Physics Institute, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
20
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
21
Department of Physics, University of Toronto,
Toronto,
ON
M5S 3H4,
Canada
22
Aix Marseille Univ, CNRS, CNES, LAM,
Marseille,
France
23
Department of Physics & Astronomy, McMaster University,
1280 Main St W,
Hamilton,
ON,
L8S 4L8,
Canada
24
Department of Physics, McGill University,
3600 rue University,
Montréal,
QC H3A 2T8,
Canada
25
Department of Earth & Planetary Sciences, McGill University,
3450 rue University,
Montréal,
QC H3A 0E8,
Canada
26
Departamento de Física, Universidade Federal do Ceará,
Caixa Postal 6030,
Campus do Pici,
Fortaleza,
Brazil
27
Centro de Astrobiología (CAB), CSIC-INTA, ESAC campus,
Camino Bajo del Castillo s/n, 28692,
Villanueva de la Cañada (Madrid),
Spain
28
Centre Vie dans l’Univers, Faculté des sciences de l’Université de Genève,
Quai Ernest-Ansermet 30,
1205
Geneva,
Switzerland
29
Planétarium de Montréal, Espace pour la Vie,
4801 av. Pierre-de Coubertin,
Montréal,
Québec,
Canada
30
Lund Observatory, Division of Astrophysics, Department of Physics, Lund University,
Box 118,
221 00
Lund,
Sweden
31
York University,
4700 Keele St,
North York,
ON
M3J 1P3,
UK
32
University of British Columbia,
2329 West Mall,
Vancouver,
BC
V6T 1Z4,
Canada
33
Western University, Department of Physics & Astronomy and Institute for Earth and Space Exploration,
1151 Richmond Street,
London
ON
N6A 3K7,
Canada
34
Light Bridges S.L., Observatorio del Teide, Carretera del Observatorio,
s/n Guimar,
38500,
Tenerife,
Canarias,
Spain
35
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg,
Germany
36
Subaru Telescope, National Astronomical Observatory of Japan (NAOJ),
650 N Aohoku Place,
Hilo,
HI 96720,
USA
37
Department of Astronomy & Astrophysics, University of Chicago,
5640 South Ellis Avenue,
Chicago,
IL
60637,
USA
38
Bishop’s Univeristy, Dept of Physics and Astronomy,
Johnson-104E, 2600 College Street,
Sherbrooke,
QC
J1M 1Z7,
Canada
39
Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Université Côte d’Azur,
Nice,
France
★ Corresponding author: Francois.Bouchy@unige.ch
Received:
7
December
2024
Accepted:
4
June
2025
Context. The Near-InfraRed Planet Searcher (NIRPS) is a high-resolution, high-stability near-infrared (NIR) spectrograph equipped with an adaptive optics (AO) system. Installed on the ESO 3.6-m telescope at La Silla Observatory, Chile, it was developed to enable radial velocity (RV) measurements of low-mass exoplanets around M dwarfs and to characterise exoplanet atmospheres in the NIR.
Aims. This paper provides a comprehensive design overview and characterisation of the NIRPS instrument, reporting on its on-sky performance, advising on how to carry out observations, and presenting its guaranteed time observation (GTO) programme.
Methods. Intensive on-sky testing phases were conducted between November 2019 and March 2023. The instrument started its operations on 1 April 2023.
Results. The spectral range continuously covers the Y, J, and H bands from 972.4 to 1919.6 nm. The thermal control system maintains 1 mK stability over several months, thereby minimising drift. The NIRPS’s AO-assisted fibre link improves coupling efficiency and offers a unique high-angular resolution capability with a fibre acceptance of only 0.4″. A high spectral resolving power of R ~ 90 000 and R ~ 75 000 is provided in high-accuracy (HA) and high-efficiency (HE) modes, respectively. The overall throughput from the top of the atmosphere to the detector peaks at 13%. The RV precision, measured on the bright star Proxima with a known exoplanetary system, is 77 cms−1. NIRPS and HARPS can be used simultaneously, offering unprecedented spectral coverage for spectroscopic characterisation and stellar activity mitigation. Modal noise can be aptly mitigated by the implementation of fibre stretchers and AO scanning mode.
Conclusions. Initial results confirm that NIRPS opens new possibilities for RV measurements, stellar characterisation, and exoplanet atmosphere studies with high precision and high spectral fidelity. NIRPS demonstrated stable RV precision at the level of 1 m s−1 over several weeks. The instrument’s high throughput, particularly in the H band, offers a notable improvement over previous spectrographs, enhancing our ability to detect small exoplanets.
Key words: instrumentation: adaptive optics / instrumentation: spectrographs / techniques: radial velocities / techniques: spectroscopic / planets and satellites: atmospheres / planets and satellites: detection
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.