Issue |
A&A
Volume 694, February 2025
|
|
---|---|---|
Article Number | A81 | |
Number of page(s) | 14 | |
Section | Planets, planetary systems, and small bodies | |
DOI | https://doi.org/10.1051/0004-6361/202452521 | |
Published online | 04 February 2025 |
Methane precipitation in ice giant atmospheres
1
Instituto Nacional de Técnica Aeroespacial (INTA),
Madrid,
Spain
2
GSMA, UMR 7331-GSMA, Université de Reims Champagne-Ardenne,
51687
Reims,
France
3
Department of Physics, University of Oxford,
Parks Rd,
Oxford
OX1 3PU,
UK
4
University of Leicester,
Leicester,
UK
★ Corresponding author; toledocd@inta.es
Received:
7
October
2024
Accepted:
12
December
2024
Context. Voyager-2 radio occultation measurements have revealed changes in the atmospheric refractivity within a 2–4 km layer near the 1.2-bar level in Uranus and the 1.6-bar level in Neptune. These changes were attributed to the presence of a methane cloud, consistent with the observation that methane concentration decreases with altitude above these levels, closely following the saturation vapor pressure. However, no clear spectral signatures of such a cloud have been detected thus far in the spectra acquired from both planets.
Aims. We examine methane cloud properties in the atmospheres of the ice giants, including vertical ice distribution, droplet radius, precipitation rates, timescales, and total opacity, employing microphysical simulations under different scenarios.
Methods. We used a one-dimensional (1D) cloud microphysical model to simulate the formation of methane clouds in the ice giants. The simulations include the processes of nucleation, condensation, coagulation, evaporation, and precipitation, with vertical mixing simulated using an eddy-diffusion profile (Keddy).
Results. Our simulations show cloud bases close to 1.24 bars in Uranus and 1.64 bars in Neptune, with droplets up to 100 µm causing high settling velocities and precipitation rates (∼370 mm per Earth year). The high settling velocities limit the total cloud opacity, yielding values at 0.8 µm of ∼0.19 for Uranus and ∼0.35 for Neptune, using Keddy = 0.5 m2 s−1 and a deep methane mole fraction (μCH4) of 0.04. In addition, lower Keddy or μCH4 values result in smaller opacities. Methane supersaturation is promptly removed by condensation, controlling the decline in μCH4 with altitude in the troposphere. However, the high settling velocities prevent the formation of a permanent thick cloud. Stratospheric hazes made of ethane or acetylene ice are expected to evaporate completely before reaching the methane condensation level. Since hazes are required for methane heterogeneous nucleation, this suggests either a change in the solid phase properties of the haze particles, inhibiting evaporation, or the presence of photochemical hazes.
Key words: planets and satellites: atmospheres
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.