Issue |
A&A
Volume 692, December 2024
|
|
---|---|---|
Article Number | A244 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202451435 | |
Published online | 17 December 2024 |
The radiative torque spin-up efficiency of ballistic dust-grain aggregates
1
Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik,
Albert-Ueberle-Straße 2,
69120
Heidelberg,
Germany
2
Max-Planck-Institut für Astrophysik,
Karl-Schwarzschild-Str. 1,
D-85748
Garching,
Germany
3
Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen,
Im Neuenheimer Feld 205,
69120
Heidelberg,
Germany
4
Harvard-Smithsonian Center for Astrophysics,
60 Garden Street,
Cambridge,
MA
02138,
U.S.A.
★ Corresponding author; jjaeger@mpa-garching.mpg.de
Received:
9
July
2024
Accepted:
16
November
2024
Aims. It is quintessential for the analysis of the observed dust polarization signal to understand the rotational dynamics of interstellar dust grains. Additionally, high rotation velocities may rotationally disrupt the grains, which impacts the grain-size distribution. We aim to constrain the set of parameters for an accurate description of the rotational spin-up process of ballistic dust grain aggregates driven by radiative torques (RATs).
Methods. We modeled the dust grains as complex fractal aggregates grown by the ballistic aggregation of uniform spherical particles (monomers) of different sizes. A broad variation of dust materials, shapes, and sizes were studied in the presence of different radiation sources.
Results. We find that the canonical parameterization for the torque efficiency overestimates the maximum angular velocity ωRAT caused by RATs acting on ballistic grain aggregates. To resolve this problem, we propose a new parameterization that predicts ωRAT more accurately. We find that RATs are most efficient for larger grains with a lower monomer density. This manifests itself as a size- and monomer-density dependence in the constant part of the parameterization. Following the constant part, the parameterization has two power laws with different slopes that retain universality for all grain sizes. The maximum grain rotation does not scale linearly with radiation strength because different drag mechanisms dominate, depending on the grain material and environment. The angular velocity ωRAT of individual single dust grains has a wide distribution and may even differ from the mean by up to two orders of magnitude. Even though ballistic aggregates have a lower RAT efficiency, strong sources of radiation (stronger than ≈100 times the typical interstellar radiation field) may still produce rotation velocities high enough to cause the rotational disruption of dust grains.
Key words: polarization / radiation: dynamics / radiation mechanisms: general / scattering / dust, extinction
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.