Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A155 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202451511 | |
Published online | 08 November 2024 |
Origin of transition disk cavities
Pebble-accreting protoplanets vs super-Jupiters
1
Leiden Observatory, Leiden University,
Einsteinweg 55,
2333 CC
Leiden,
The Netherlands
2
Department of Astronomy, Tsinghua University,
100084
Beijing,
China
★ Corresponding author; shuang@strw.leidenuniv.nl
Received:
15
July
2024
Accepted:
2
October
2024
Context. Protoplanetary disks surrounding young stars are the birth places of planets. Among them, transition disks with inner dust cavities of tens of au are sometimes suggested to host massive companions. Yet, such companions are often not detected.
Aims. Some transition disks exhibit a large amount of gas inside the dust cavity and relatively high stellar accretion rates, which contradicts typical models of gas-giant-hosting systems. Therefore, we investigate whether a sequence of low-mass planets can create the appearance of cavities in the dust disk.
Methods. We evolve the disks with low-mass growing embryos in combination with 1D dust transport and 3D pebble accretion, to investigate the reduction of the pebble flux at the embryos’ orbits. We vary the planet and disk properties to understand the resulting dust profile.
Results. We find that multiple pebble-accreting planets can efficiently decrease the dust surface density, resulting in dust cavities consistent with transition disks. The number of low-mass planets necessary to sweep up all pebbles decreases with decreasing turbulent strength and is preferred when the dust Stokes number is 10−2 − 10−4. Compared to dust rings caused by pressure bumps, those by efficient pebble accretion exhibit more extended outer edges. We also highlight the observational reflections: the transition disks with rings featuring extended outer edges tend to have a large gas content in the dust cavities and rather high stellar accretion rates.
Conclusions. We propose that planet-hosting transition disks consist of two groups. In Group A disks, planets have evolved into gas giants, opening deep gaps in the gas disk. Pebbles concentrate in pressure maxima, forming dust rings. In Group B, multiple Neptunes (unable to open deep gas gaps) accrete incoming pebbles, causing the appearance of inner dust cavities and distinct ring-like structures near planet orbits. The morphological discrepancy of these rings may aid in distinguishing between the two groups using high-resolution ALMA observations.
Key words: protoplanetary disks / planet-disk interactions
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.