Issue |
A&A
Volume 632, December 2019
|
|
---|---|---|
Article Number | A7 | |
Number of page(s) | 25 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201936309 | |
Published online | 26 November 2019 |
Super-Earth masses sculpted by pebble isolation around stars of different masses
Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University,
Box 43, 22100 Lund, Sweden
e-mail: bbliu@astro.lu.se
Received:
14
July
2019
Accepted:
29
August
2019
We developed a pebble-driven core accretion model to study the formation and evolution of planets around stars in the stellar mass range of 0.08 M⊙–1 M⊙. By Monte Carlo sampling of the initial conditions, the growth and migration of a large number of individual protoplanetary embryos were simulated in a population synthesis manner. We tested two hypotheses for the birth locations of embryos: at the water ice line or log-uniformly distributed over entire protoplanetary disks. Two types of disks with different turbulent viscous parameters αt of 10−3 and 10−4 are also investigated to shed light on the role of outward migration of protoplanets. The forming planets are compared with the observed exoplanets in terms of mass, semimajor axis, metallicity, and water content. We find that gas giant planets are likely to form when the characteristic disk sizes are larger, the disk accretion rates are higher, the disks are more metal rich, and/or their stellar hosts are more massive. Our model shows that first, the characteristic mass of super-Earth is set by the pebble isolation mass. Super-Earth masses increase linearly with the mass of its stellar host, which corresponds to one Earth mass around a late M-dwarf star and 20 Earth masses around a solar-mass star. Second, the low-mass planets, up to 20 M⊕, can form around stars with a wide range of metallicities, while massive gas giant planets are preferred to grow around metal rich stars. Third, super-Earth planets that are mainly composed of silicates, with relatively low water fractions, can form from protoplanetary embryos at the water ice line in weakly turbulent disks where outward migration is suppressed. However, if the embryos are formed over a wide range of radial distances, the super-Earths would end up having a distinctive, bimodal composition in water mass. Altogether, our model succeeds in quantitatively reproducing several important observed properties of exoplanets and correlations with their stellar hosts.
Key words: methods: numerical / planets and satellites: formation
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.