Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A219 | |
Number of page(s) | 18 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202348164 | |
Published online | 15 November 2024 |
Spectral reconstruction for radiation hydrodynamic simulations of galaxy evolution
1
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
2
Department of Physics and Astronomy, McMaster University, Hamilton L8S 4M1, Canada
⋆ Corresponding author; bernhard.baumschlager@astro.uio.no
Received:
5
October
2023
Accepted:
12
September
2024
Radiation from stars and active galactic nuclei (AGN) plays an important role in galaxy formation and evolution, and profoundly transforms the intergalactic, circumgalactic, and interstellar medium (IGM, CGM, and ISM). On-the-fly radiative transfer (RT) has started being incorporated in cosmological simulations, but the complex evolving radiation spectra are often crudely approximated with a small number of broad bands with piece-wise constant intensity and a fixed photo-ionisation cross-section. Such a treatment is unable to capture the changes to the spectrum as light is absorbed while it propagates through a medium with non-zero opacity. This can lead to large errors in photo-ionisation and heating rates. In this work we present a novel approach of discretising the radiation field at discrete photon energies, at the edges of the typically used photo-ionising bands, in order to capture the power-law slope of the radiation field. In combination with power-law approximations for the photo-ionisation cross-sections, this model allows us to self-consistently combine radiation from sources with different spectra and accurately follow the ionisation states of primordial and metal species through time. The method is implemented in GASOLINE2 in connection with TREVR2, a fast reverse ray tracing algorithm with 𝒪(Nactive log2 N) scaling. We compare our new piece-wise power-law reconstruction to the piece-wise constant method in calculating the primordial chemistry photo-ionisation and heating rates under an evolving UV background (UVB) and stellar spectrum, and find that our method reduces errors significantly, by up to two orders of magnitude in the case of HeII ionisation. We apply our new spectral reconstruction method in RT post-processing of a cosmological zoom-in simulation, MUGS2 g1536, including radiation from stars and a live UVB, and find a significant increase in total neutral hydrogen (HI) mass in the ISM and the CGM due to shielding of the UVB and a low escape fraction of the stellar radiation. This demonstrates the importance of RT and an accurate spectral approximation in simulating the CGM-galaxy ecosystem.
Key words: radiative transfer / methods: numerical / galaxies: evolution / galaxies: formation / galaxies: ISM
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.