Issue |
A&A
Volume 689, September 2024
|
|
---|---|---|
Article Number | A135 | |
Number of page(s) | 10 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202450186 | |
Published online | 06 September 2024 |
Modelling the connection between propagating disturbances and solar spicules
1
Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven, Belgium
2
Plasma Dynamics Group, Department of Automatic Control & Systems Engineering, The University of Sheffield, Sheffield, UK
3
Indian Institute of Astrophysics, Koramangala, Bangalore, India
Received:
29
March
2024
Accepted:
18
June
2024
Aims. Propagating (intensity) disturbances (PDs) have been extensively reported in observations of coronal loops and polar plumes, along with more recent links to co-temporal spicule activity in the solar atmosphere. However, despite their appearance in observations, PDs have yet to be studied or modelled in depth.
Methods. In this work, we present results from a three-dimensional magnetohydrodynamic (3D MHD) numerical model. It features a stratified solar atmosphere perturbed by a p-mode wave driver at the photosphere, subsequently forming spicules described by the rebound shock model.
Results. We find the features of the detected PDs to be consistent with the co-temporal transition region dynamics and spicular activity resulting from non-linear wave steepening and shock formation. Furthermore, the PDs could be interpreted as slow magnetoacoustic pulses propagating along the magnetic field, rather than high-speed plasma upflows carrying sufficient energy flux to (at least partially) heat the lower coronal plasma. Using forward modelling, we demonstrate the similarities between the PDs in the simulations and those reported from observations with IRIS and SDO/AIA.
Conclusions. Our results suggest that in the model presented here, the dynamical movement of the transition region is a result of wave dynamics and shock formation in the lower solar atmosphere. We find that PDs are launched co-temporally with the rising of the transition region, regardless of the wave-generating physical mechanisms occurring in the underlying lower solar atmosphere. However, it is clear that signatures of PDs appear much clearer when a photospheric wave driver is included. Finally, we present the importance of PDs in the context of providing a source for powering the (fast) solar wind.
Key words: Sun: chromosphere / Sun: corona / Sun: oscillations / solar wind / Sun: transition region
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.