Issue |
A&A
Volume 687, July 2024
|
|
---|---|---|
Article Number | A205 | |
Number of page(s) | 20 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202449865 | |
Published online | 15 July 2024 |
Using autoencoders and deep transfer learning to determine the stellar parameters of 286 CARMENES M dwarfs★
1
Centro de Astrobiología (CAB), CSIC-INTA,
Camino Bajo del Castillo s/n, 28692 Villanueva de la Canada,
Madrid,
Spain
e-mail: pmas@cab.inta-csic.es
2
Departamento de Ingeniería Mecánica, Universidad de la Rioja,
San José de Calasanz 31,
26004
Logroño,
La Rioja,
Spain
3
Instituto de Astrofísica de Canarias,
c/ Via Láctea s/n,
38205
La Laguna,
Tenerife,
Spain
4
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna,
Tenerife,
Spain
5
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg,
Germany
6
Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid,
28040
Madrid,
Spain
7
Departamento de Ingeniería de Organization, Administración de Empresas y Estadística, Universidad Politécnica de Madrid,
c/ José Gutiérrez Abascal 2,
28006
Madrid,
Spain
8
Departamento de Construcción e Ingeniería de Fabricación, Universidad de Oviedo,
Pedro Puig Adam, Sede Departamental Oeste, Módulo 7, 1 a planta,
33203
Gijón,
Spain
Received:
5
March
2024
Accepted:
2
May
2024
Context. Deep learning (DL) techniques are a promising approach among the set of methods used in the ever-challenging determination of stellar parameters in M dwarfs. In this context, transfer learning could play an important role in mitigating uncertainties in the results due to the synthetic gap (i.e. difference in feature distributions between observed and synthetic data).
Aims. We propose a feature-based deep transfer learning (DTL) approach based on autoencoders to determine stellar parameters from high-resolution spectra. Using this methodology, we provide new estimations for the effective temperature, surface gravity, metallicity, and projected rotational velocity for 286 M dwarfs observed by the CARMENES survey.
Methods. Using autoencoder architectures, we projected synthetic PHOENIX-ACES spectra and observed CARMENES spectra onto a new feature space of lower dimensionality in which the differences between the two domains are reduced. We used this low-dimensional new feature space as input for a convolutional neural network to obtain the stellar parameter determinations.
Results. We performed an extensive analysis of our estimated stellar parameters, ranging from 3050 to 4300 K, 4.7 to 5.1 dex, and −0.53 to 0.25 dex for Teff, log 𝑔, and [Fe/H], respectively. Our results are broadly consistent with those of recent studies using CARMENES data, with a systematic deviation in our Teff scale towards hotter values for estimations above 3750 K. Furthermore, our methodology mitigates the deviations in metallicity found in previous DL techniques due to the synthetic gap.
Conclusions. We consolidated a DTL-based methodology to determine stellar parameters in M dwarfs from synthetic spectra, with no need for high-quality measurements involved in the knowledge transfer. These results suggest the great potential of DTL to mitigate the differences in feature distributions between the observations and the PHOENIX-ACES spectra.
Key words: methods: data analysis / techniques: spectroscopic / stars: fundamental parameters / stars: late-type / stars: low-mass
Full Table A.1 is available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/687/A205
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.