Issue |
A&A
Volume 687, July 2024
|
|
---|---|---|
Article Number | L14 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202449308 | |
Published online | 15 July 2024 |
Letter to the Editor
[Mg/Fe] and variable initial mass function: Revision of [α/Fe] for massive galaxies
1
Instituto de Astrofísica de Canarias (IAC), 38200 La Laguna, Tenerife, Spain
e-mail: emiliepernet.astro@gmail.com
2
Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
3
Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, GU2 7XH Guildford, UK
4
Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
Received:
22
January
2024
Accepted:
1
May
2024
Observations of nearby massive galaxies have revealed that they are older and richer in metals and magnesium than their low-mass counterparts. In particular, the overabundance of magnesium compared to iron, [Mg/Fe], is interpreted to reflect the short star formation history that the current massive galaxies underwent early in the Universe. We present a systematic revision of the [Mg/Fe] – velocity dispersion (σ) relation based on stacked spectra of early-type galaxies with a high signal-to-noise ratio from the Sloan Digital Sky Survey. Using the penalized pixel-fitting (pPXF) method and the MILES single stellar population models, we fit a wide optical wavelength range to measure the net α-abundance. The combination of pPXF and α-enhanced MILES models incorrectly leads to an apparently decreasing trend of [α/Fe] with velocity dispersion. We interpret this result as a consequence of variations in the individual abundances of the different α-elements. This warrants caution for a naive use of full spectral fitting algorithms paired with stellar population models that do not take individual elemental abundance variations into account, especially when deriving averaged quantities such as the mean [α/Fe] of a stellar population. In addition, and based on line-strength measurements, we quantify the impact of a non-universal initial mass function on the recovered abundance pattern of galaxies. In particular, we find that a simultaneous fit of the slope of the initial mass function and the [Mg/Fe] results in a shallower [Mg/Fe]–σ relation. Therefore, our results suggest that star formation in massive galaxies lasted longer than what has been reported previously, although it still occurred significantly faster than in the solar neighbourhood.
Key words: galaxies: abundances / galaxies: elliptical and lenticular / cD / galaxies: evolution / galaxies: stellar content
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.