Issue |
A&A
Volume 687, July 2024
|
|
---|---|---|
Article Number | A184 | |
Number of page(s) | 12 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/202348796 | |
Published online | 16 July 2024 |
Viscous torque in turbulent magnetized active galactic nucleus accretion disks and its effects on the gravitational waves of extreme mass ratio inspirals
Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
e-mail: f.h.noori@cft.edu.pl
Received:
30
November
2023
Accepted:
20
March
2024
The merger of supermassive black holes produces millihertz gravitational waves (GWs), which are potentially detectable by the future Laser Interferometer Space Antenna (LISA). Such binary systems are usually embedded in an accretion disk environment at the center of an active galactic nucleus (AGN). Recent studies suggest the plasma environment imposes measurable imprints on the GW signal if the mass ratio of the binary is around q ∼ 10−4 − 10−3. The effect of the gaseous environment on the GW signal is strongly dependent on the disk’s parameters; therefore, it is believed that future low-frequency GW detections will provide us with precious information about the physics of AGN accretion disks. We investigated this effect by measuring the viscous torque via modeling of the evolution of magnetized tori around the primary massive black hole. Using the general relativistic magnetohydrodynamic HARM-COOL code, we performed 2D and 3D simulations of weakly magnetized, thin accretion disks, with a possible truncation and transition to advection-dominated accretion flow. We studied the angular momentum transport and turbulence generated by the magnetorotational instability. We quantified the disk’s effective alpha viscosity and its evolution over time. We applied our numerical results to quantify the relativistic viscous torque on a hypothetical low-mass secondary black hole via a 1D analytical approach, and we estimated the GW phase shift due to the gas environment.
Key words: quasars: supermassive black holes
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.