Issue |
A&A
Volume 685, May 2024
|
|
---|---|---|
Article Number | A137 | |
Number of page(s) | 11 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202348839 | |
Published online | 17 May 2024 |
Spectral variations within solar flare ribbons
1
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
e-mail: apietrow@aip.de
2
Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
3
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
Received:
4
December
2023
Accepted:
22
February
2024
Context. Solar flare ribbons are intense brightenings of primarily chromospheric material that are responsible for a large fraction of the chromospheric emission in solar and stellar flares. We present an on-disc observation of flare ribbon substructures in an X9.3-class flare observed by the Swedish 1-m Solar Telescope.
Aims. We aim to identify categories of ribbon substructures seen in the Ca II 8542 Å, Hα, and Ca II K lines, focusing on their spatial locations and their (spectro-)polarimetric properties.
Methods. We used COlor COllapsed Plotting (COCOPLOT) software to assist in identifying areas of interest.
Results. We present five categories of spectral profiles within the general body of the flare ribbon: (1) extremely broadened spectral line profiles, where the standard Fabry–Perot interferometer wavelength windows (≈70 km s−1) are not sufficiently wide to allow for a complete analysis of the dynamics and atmospheric conditions. The mechanisms causing this degree of this broadening are not yet clearly understood; (2) long-lived, dense kernels that manifest as more saturated chromospheric line profiles with lower signal in both Stokes parameters. They are interpreted as footpoints of bunched magnetic field loops, whose chromospheric lines form at greater heights than the nearby areas; (3) Doppler-shifted leading edges of the flare ribbon in regions that transiently display lower Stokes signals due to the emission dominating at greater heights in the atmosphere; (4) condensed coronal rain overlapping the flare ribbons in the line of sight, producing exceptionally high Doppler shifts near the footpoints; and (5) compact blueshifted areas close to areas with coronal rain down-flows, which are understood to be material that has been thrown up as a result of the down-flowing material impacting the chromosphere. Additionally, a ribbon formation height of about 700 km with respect to penumbral features is estimated using correlating structures on the ribbon and the underlying photosphere.
Conclusions. When selecting areas of the flare ribbon for more general analysis (especially small regions consisting of a few pixels or low-resolution averages), it is important to be aware of the variety of substructures present within a flare ribbon and of the spatial context that can produce these differences. General behaviors across the ribbon should not be inferred from regions that show localized differences.
Key words: Sun: atmosphere / Sun: chromosphere / Sun: flares
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.