Issue |
A&A
Volume 682, February 2024
|
|
---|---|---|
Article Number | A122 | |
Number of page(s) | 23 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202347838 | |
Published online | 12 February 2024 |
GA-NIFS: JWST/NIRSpec integral field unit observations of HFLS3 reveal a dense galaxy group at z ∼ 6.3
1
Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
e-mail: gareth.jones@physics.ox.ac.uk
2
Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
3
Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
4
Centro de Astrobiología (CAB), CSIC-INTA, Cra. de Ajalvir Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain
5
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
6
Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France
7
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
8
NRC Herzberg, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada
9
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
10
European Space Agency, c/o STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA
11
INAF – Osservatorio Astrofisco di Arcetri, Largo E. Fermi 5, 50127 Firenze, Italy
12
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany
13
AURA for European Space Agency, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21210, USA
Received:
30
August
2023
Accepted:
29
November
2023
Massive, starbursting galaxies in the early Universe represent some of the most extreme objects in the study of galaxy evolution. One such source is HFLS3 (z ∼ 6.34), which was originally identified as an extreme starburst galaxy with mild gravitational magnification (μ ∼ 2.2). Here, we present new observations of HFLS3 with the JWST/NIRSpec integral field unit in both low (PRISM/CLEAR; R ∼ 100) and high spectral resolution (G395H/290LP; R ∼ 2700), with high spatial resolution (∼0.1″) and sensitivity. Using a combination of the NIRSpec data and a new lensing model with accurate spectroscopic redshifts, we find that the 3″ × 3″ field is crowded, with a lensed arc (C, z = 6.3425 ± 0.0002), two galaxies to the south (S1 and S2, z = 6.3592 ± 0.0001), two galaxies to the west (W1, z = 6.3550 ± 0.0001; W2, z = 6.3628 ± 0.0001), and two low-redshift interlopers (G1, z = 3.4806 ± 0.0001; G2, z = 2.00 ± 0.01). We present spectral fits and morpho-kinematic maps for each bright emission line (e.g. [OIII]λ5007, Hα, and [NII]λ6584) from the R2700 data for all sources except G2 (whose spectral lines fall outside the observed wavelengths of the R2700 data). From a line ratio analysis, we find that the galaxies in component C are likely powered by star formation, though we cannot rule out or confirm the presence of active galactic nuclei in the other high-redshift sources. We performed gravitational lens modelling, finding evidence for a two-source composition of the lensed central object and a magnification factor (μ = 2.1 − 2.4) comparable to findings of previous work. The projected distances and velocity offsets of each galaxy suggest that they will merge within the next ∼1 Gyr. Finally, we examined the dust extinction-corrected SFRHα of each z > 6 source, finding that the total star formation (510 ± 140 M⊙ yr−1, magnification-corrected) is distributed across the six z ∼ 6.34 − 6.36 objects over a region of diameter ∼11 kpc. Altogether, this suggests that HFLS3 is not a single starburst galaxy, but instead a merging system of star-forming galaxies in the epoch of reionisation.
Key words: gravitation / gravitational lensing: strong / galaxies: high-redshift / galaxies: kinematics and dynamics / galaxies: star formation
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.