Issue |
A&A
Volume 680, December 2023
|
|
---|---|---|
Article Number | A68 | |
Number of page(s) | 12 | |
Section | Celestial mechanics and astrometry | |
DOI | https://doi.org/10.1051/0004-6361/202346636 | |
Published online | 08 December 2023 |
Asymmetric capture into Neptunian 1:2 resonance
1
School of Astronomy and Space Science, Nanjing University,
163 Xianlin Avenue,
Nanjing
210046,
PR China
2
Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University,
PR China
e-mail: zhouly@nju.edu.cn
Received:
11
April
2023
Accepted:
12
September
2023
The asymmetric resonance configuration characterised by the critical angle librating around centres other than 0° or 180° is found in the 1:N mean motion resonance. The asymmetric 1:2 resonance with Neptune is of particular interest because the two asymmetric islands seem to host different populations, and this might be a direct clue to understanding the early evolution of the Solar System. The asymmetry has been investigated from both observational and theoretical perspectives, but conclusions among studies vary widely. In this paper, using toy models, we carefully designed a series of tests to systematically study the capture of planetesimals into the leading and trailing resonance islands. Although these tests may not exactly reproduce the real processes the Solar System experienced, they reveal some typical dynamics in the resonance capture. Since the real Twotinos have small to moderate inclinations, as a first attempt, we adopted planar models in this paper in order to investigate the mechanisms that may lead to asymmetric capture by the leading and trailing islands, including their size variation during the outward migration of Neptune, the stickiness of the leading island, and the migration slowdown effect. We find that the ratio between the populations of the leading and trailing islands can be easily tuned by introducing the slowdown effect into the migration model, and thus it may not be a good tracer of the migration history. However, the eccentricity of objects trapped in two asymmetric islands may conserve some valuable information of the early evolution of the Solar System.
Key words: celestial mechanics / Kuiper belt: general / methods: miscellaneous
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.