Issue |
A&A
Volume 678, October 2023
|
|
---|---|---|
Article Number | A112 | |
Number of page(s) | 10 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202347348 | |
Published online | 13 October 2023 |
Interaction of H2S with H atoms on grain surfaces under molecular cloud conditions
Laboratory for Astrophysics, Leiden Observatory, Leiden University,
PO Box 9513,
2300
RA Leiden,
The Netherlands
e-mail: santos@strw.leidenuniv.nl
Received:
3
July
2023
Accepted:
14
August
2023
Context. Hydrogen sulfide (H2S) is thought to be efficiently formed on grain surfaces through the successive hydrogenation of sulfur atoms. Its non-detection so far in astronomical observations of icy dust mantles thus indicates that effective destruction pathways must play a significant role in its interstellar abundance. While chemical desorption has been shown to remove H2S very efficiently from the solid phase, in line with H2S gas-phase detections, possible ice chemistry triggered by the related HS radical have been largely disregarded so far, despite it being an essential intermediate in the H2S + H reaction scheme.
Aims. We aim to thoroughly investigate the fate of H2S upon H-atom impact under molecular cloud conditions, providing a comprehensive analysis combined with detailed quantification of both the chemical desorption and ice chemistry that ensues.
Methods. We performed experiments in an ultrahigh vacuum chamber at temperatures between 10 and 16 K in order to investigate the reactions between H2S molecules and H atoms on interstellar ice analogs. The changes in the solid phase during H-atom bombardment were monitored in situ by means of reflection absorption infrared spectroscopy (RAIRS), and desorbed species were complementarily measured with a quadrupole mass spectrometer (QMS).
Results. We confirmed the formation of H2S2 via reactions involving H2S + H and quantified its formation cross section under the employed experimental conditions. Additionally, we directly assessed the chemical desorption of H2S by measuring the gas-phase desorption signals with the QMS, providing unambiguous desorption cross sections. Chemical desorption of H2S2 was not observed. The relative decrease of H2S ices by chemical desorption changed from ~85% to ~74% between temperatures of 10 and 16 K, while the decrease as the result of H2S2 formation was enhanced from ~15% to ~26%, suggesting an increasingly relevant sulfur chemistry induced by HS radicals at warmer environments. The astronomical implications are further discussed.
Key words: astrochemistry / methods: laboratory: solid state / infrared: ISM / ISM: molecules
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.