Issue |
A&A
Volume 677, September 2023
|
|
---|---|---|
Article Number | L7 | |
Number of page(s) | 10 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202347169 | |
Published online | 06 September 2023 |
Letter to the Editor
Close-in ice lines and the super-stellar C/O ratio in discs around very low-mass stars
1
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
e-mail: mah@mpia.de
2
Lunar and Planetary Laboratory, Department of Planetary Sciences, The University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721, USA
Received:
13
June
2023
Accepted:
26
August
2023
The origin of the elevated C/O ratios in discs around late M dwarfs compared to discs around solar-type stars is not well understood. Here we endeavour to reproduce the observed differences in the disc C/O ratios as a function of stellar mass using a viscosity-driven disc evolution model and study the corresponding atmospheric composition of planets that grow inside the water-ice line in these discs. We carried out simulations using a coupled disc evolution and planet formation code that includes pebble drift and evaporation. We used a chemical partitioning model for the dust composition in the disc midplane. Inside the water-ice line, the disc’s C/O ratio initially decreases to sub-stellar due to the inward drift and evaporation of water-ice-rich pebbles before increasing again to super-stellar values due to the inward diffusion of carbon-rich vapour. We show that this process is more efficient for very low-mass stars compared to solar-type stars due to the closer-in ice lines and shorter disc viscous timescales. In high-viscosity discs, the transition from sub-stellar to super-stellar takes place faster due to the fast inward advection of carbon-rich gas. Our results suggest that planets accreting their atmospheres early (when the disc C/O is still sub-stellar) will have low atmospheric C/O ratios, while planets that accrete their atmospheres late (when the disc C/O has become super-stellar) can obtain high C/O ratios. Our model predictions are consistent with observations, under the assumption that all stars have the same metallicity and chemical composition, and that the vertical mixing timescales in the inner disc are much shorter than the radial advection timescales. This further strengthens the case for considering stellar abundances alongside disc evolution in future studies that aim to link planet (atmospheric) composition to disc composition.
Key words: astrochemistry / planets and satellites: atmospheres / protoplanetary disks / stars: late-type / stars: low-mass
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.