Issue |
A&A
Volume 675, July 2023
|
|
---|---|---|
Article Number | A45 | |
Number of page(s) | 8 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202346089 | |
Published online | 30 June 2023 |
The He I 10 830 Å line: Radiative transfer and differential illumination effects
1
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
e-mail: andres.vicente.arevalo@gmail.com
2
Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
3
Astronomical Institute of the Academy of Sciences, Fričova 298, 251 65 Ondřejov, Czech Republic
Received:
6
February
2023
Accepted:
14
May
2023
We study the formation of the Stokes profiles of the He I multiplet at 10 830 Å when relaxing two of the approximations that are typically considered in the modeling of this multiplet. Specifically, these are the lack of self-consistent radiation transfer and the assumption of equal illumination of the individual multiplet components. This He I multiplet is among the most important for the diagnostics of the outer solar atmosphere from spectropolarimetric observations, especially in prominences, filaments, and spicules. However, the aptness of these approximations is yet to be assessed, especially in situations where the optical thickness is on the order of one (or greater) and the radiation transfer has a significant impact in the local anisotropy as well as the ensuing spectral line polarization. This issue becomes particularly relevant in the ongoing development of new inversion tools that take into account multi-dimensional radiation transfer effects. To relax these approximations, we generalized the multi-term equations for the atomic statistical equilibrium to allow for a differential illumination of the multiplet components and implement them in a one-dimensional (1D) radiative transfer code. We find that even for this simple geometry and relatively small optical thickness, both radiation transfer and differential illumination effects have a significant impact on the emergent polarization profiles. These effects should be taken into account in order to avoid potentially significant errors when inferring the magnetic field vector.
Key words: atomic processes / polarization / radiative transfer / Sun: atmosphere
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.