Issue |
A&A
Volume 674, June 2023
|
|
---|---|---|
Article Number | L2 | |
Number of page(s) | 4 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202346265 | |
Published online | 31 May 2023 |
Letter to the Editor
Vacuum polarization alters the spectra of accreting X-ray pulsars
Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany
e-mail: ekaterina.sokolova-lapa@fau.de
Received:
28
February
2023
Accepted:
28
April
2023
It is a common belief that for magnetic fields typical of accreting neutron stars in high-mass X-ray binaries vacuum polarization only affects the propagation of polarized emission in the neutron star magnetosphere. We show that vacuum resonances can significantly alter the emission from the poles of accreting neutron stars. The effect is similar to vacuum polarization in the atmospheres of isolated neutron stars and can result in suppression of the continuum and the cyclotron lines. It is enhanced by magnetic Comptonization in the hot plasma and proximity to the electron cyclotron resonance. We present several models to illustrate the vacuum polarization effect for various optically thick media and discuss how the choice of polarization modes affects the properties of the emergent radiation by simulating polarized energy- and angle-dependent radiative transfer. Polarization effects, including vacuum polarization, crucially alter the emission properties. Together with strongly angle- and energy-dependent magnetic Comptonization, they result in a complex spectral shape, which can be described by dips and humps on top of a power-law-like continuum with high-energy cutoff. These effects provide a possible explanation for the common necessity of additional broad Gaussian components and two-component Comptonization models that are used to describe spectra of accreting X-ray pulsars. We also demonstrate the character of depolarization introduced by the radiation field’s propagation inside the inhomogeneous emission region.
Key words: X-rays: binaries / stars: neutron / methods: numerical / radiative transfer / polarization / magnetic fields
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.