Issue |
A&A
Volume 674, June 2023
|
|
---|---|---|
Article Number | A99 | |
Number of page(s) | 17 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202245818 | |
Published online | 15 June 2023 |
The slippery slope of dust attenuation curves
Correlation of dust attenuation laws with star-to-dust compactness up to z = 4
1
National Centre for Nuclear Research, ul. Pasteura 7, 02-093 Warszawa, Poland
e-mail: mahmoud.hamed@ncbj.gov.pl
2
Aix-Marseille Univ. CNRS, CNES, LAM, 13015 Marseille, France
3
SISSA, Via Bonomea 265, Trieste, Italy
4
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 87-100 Toruń, Poland
Received:
29
December
2022
Accepted:
25
April
2023
Aims. We investigate the dust attenuation of 122 heavily dust-obscured galaxies detected with the Atacama Large Millimeter Array (ALMA) and Herschel in the COSMOS field. We search for correlations between dust attenuation recipes and the variation of physical parameters, namely, the effective radii of galaxies, their star formation rates, and stellar masses. We aim to understand which of the commonly used laws best describes dust attenuation in dusty star-forming galaxies (DSFGs) at high redshift.
Methods. We made use of the extensive photometric coverage of the COSMOS data combined with highly resolved dust continuum maps from ALMA. We used CIGALE to estimate various physical properties of these dusty objects, namely: their star formation rates (SFR), their stellar masses, and their attenuation at short wavelengths. We inferred the effective radii (Re) of galaxies using GALFIT in the Y band of HSC and ALMA continuum maps. We used these radii to investigate the relative compactness of the dust continuum and the extension of the rest-frame UV/optical Re(y)/Re(ALMA).
Results. We find that the physical parameters calculated from our models strongly depend on the assumption of the dust attenuation curve. As expected, the most impacted parameter is the stellar mass, which leads to a change in the “starburstiness” of the objects. We find that taking into account the relative compactness of star-to-dust emission prior to SED fitting is crucial, especially when studying dust attenuation of dusty star-forming galaxies. Shallower attenuation curves do not show a clear preference of compactness with attenuation, while the Calzetti attenuation curve is shown to prefer a comparable spatial extent of unattenuated stellar light and dust emission. The evolution of the Re(UV)/Re(ALMA) ratio with redshift peaks around the cosmic noon in our sample of DSFGs, showing that this compactness is correlated with the cosmic SFR density of these dusty sources.
Key words: Galaxy: evolution / galaxies: high-redshift / galaxies: star formation / galaxies: starburst / infrared: galaxies / galaxies: ISM
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.