Issue |
A&A
Volume 646, February 2021
|
|
---|---|---|
Article Number | A127 | |
Number of page(s) | 10 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202039577 | |
Published online | 17 February 2021 |
Multiwavelength dissection of a massive heavily dust-obscured galaxy and its blue companion at z∼2
1
National Centre for Nuclear Research, ul. Pasteura 7, 02-093 Warszawa, Poland
e-mail: mahmoud.hamed@ncbj.gov.pl
2
Aix Marseille Univ. CNRS, CNES, LAM, Marseille, France
3
CEA, Irfu, DAp, AIM, Université Paris-Saclay, Université de Paris, CNRS, 91191 Gif-sur-Yvette, France
4
Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
5
Instituto de Fisica, Pontificia Universidad Católica de Valparaíso, Casilla, 4059 Valparaiso, Chile
Received:
2
October
2020
Accepted:
13
January
2021
Aims. We study a system of two galaxies, Astarte and Adonis, at z ∼ 2. At this time, the Universe was undergoing the peak of its star formation activity. Astarte is a dusty star-forming galaxy at the massive end of the main sequence (MS), and Adonis is a less massive companion galaxy that is bright in the ultraviolet and has an optical spectroscopic redshift. We investigate whether this ultramassive galaxy is quenching, and whether it has always been on the MS of star-forming galaxies.
Methods. We used the code CIGALE to model the spectral energy distribution. The code relies on the energetic balance between the ultraviolet and the infrared. We derived some of the key physical properties of Astarte and Adonis, mainly their star formation rates (SFRs), stellar masses, and dust luminosities. We inspected the variation of the physical parameters depending on the assumed dust-attenuation law. We also estimated the molecular gas mass of Astarte from its CO emission, using different αCO and transition ratios (r31), and we discuss the implication of the various assumptions on the gas-mass derivation.
Reults. We find that Astarte exhibits a MS-like star formation activity, and Adonis is undergoing a strong starburst phase. The molecular gas mass of Astarte is far lower than the gas fraction of typical star-forming galaxies at z = 2. This low gas content and high SFR result in a depletion time of 0.22 ± 0.07 Gyr, which is slightly shorter than expected for a MS galaxy at this redshift. The CO luminosity relative to the total infrared luminosity suggests a MS-like activity when we assume a galactic conversion factor and a low transition ratio. The SFR of Astarte is on the same order when different attenuation laws are used, unlike its stellar mass, which increases when shallow attenuation laws are used (∼1 × 1011 M⊙ assuming a Calzetti relation, versus ∼4 × 1011 M⊙ assuming a shallow attenuation law). We discuss these properties and suggest that Astarte might be experiencing a recent decrease in star formation activity and is quenching through the MS following a starburst epoch.
Key words: galaxies: evolution / galaxies: high-redshift / galaxies: ISM / infrared: galaxies / submillimeter: galaxies / galaxies: starburst
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.