Issue |
A&A
Volume 674, June 2023
|
|
---|---|---|
Article Number | A164 | |
Number of page(s) | 13 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202244441 | |
Published online | 19 June 2023 |
Pyodine: an open, flexible reduction software for iodine-calibrated precise radial velocities★
1
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg,
Königstuhl 12,
69117
Heidelberg, Germany
e-mail: pheeren@lsw.uni-heidelberg.de
2
Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University,
Ny Munkegade 120,
8000
Aarhus C, Denmark
3
Instituto de Astrofísica de Canarias,
38200
La Laguna, Tenerife, Spain
4
Universidad de La Laguna (ULL), Departamento de Astrofísica,
38206
La Laguna, Tenerife, Spain
Received:
7
July
2022
Accepted:
24
April
2023
Context. Many telescopes use an iodine (I2) absorption cell to measure precise radial velocities (RVs), but their data reduction pipelines are all tailored to their respective instrumental characteristics and not openly accessible.
Aims. For existing and future projects dedicated to measuring precise RVs, we have created an open-source, flexible data reduction software to extract RVs from échelle spectra via the I2 cell method. The software, called pyodine, is completely written in Python and has been built in a modular structure to allow for easy adaptation to different instruments.
Methods. We present the fundamental concepts employed by pyodine, which build on existing I2 reduction codes, and give an overview of the software’s structure. We adapted pyodine to two instruments, Hertzsprung SONG located at Teide Observatory (SONG hereafter) and the Hamilton spectrograph at Lick Observatory (Lick hereafter), and demonstrate the code’s flexibility and its performance on spectra from these facilities.
Results. Both for SONG and Lick data, the pyodine results generally match the RV precision achieved by the dedicated instrument pipelines. Notably, our code reaches a precision of roughly 0.69 m s−1 on a short-term solar time series of SONG spectra, and confirms the planet-induced RV variations of the star HIP 36616 on spectra from SONG and Lick. Using the solar spectra, we also demonstrate the capabilities of our software in extracting velocity time series from single absorption lines. A probable instrumental effect of SONG is still visible in the pyodine RVs, despite being a bit damped as compared to the original results.
Conclusions. With pyodine we prove the feasibility of a highly precise, yet instrument-flexible I2 reduction software, and in the future the code will be part of the dedicated data reduction pipelines for the SONG network and the Waltz telescope project in Heidelberg.
Key words: methods: data analysis / techniques: radial velocities / techniques: spectroscopic / planets and satellites: detection
Radial velocity data of σ Draconis and HIP 36616 are only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/674/A164
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.