Issue |
A&A
Volume 673, May 2023
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 15 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202243934 | |
Published online | 16 May 2023 |
The CARMENES search for exoplanets around M dwarfs
A deep transfer learning method to determine Teff and [M/H] of target stars★
1
Departamento de Construcción e Ingeniería de Fabricación, Universidad de Oviedo,
c/ Pedro Puig Adam, Sede Departamental Oeste, Módulo 7, 1 a planta,
33203
Gijón,
Spain
e-mail: abello@uniovi.es
2
Instituto de Astrofísica de Canarias,
c/ Vía Láctea s/n,
38205
La Laguna, Tenerife,
Spain
3
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna, Tenerife,
Spain
4
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg,
Germany
5
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma,
440 West Brooks Street,
Norman, OK
73019,
USA
6
Departamento de Ingeniería de Organización, Administración de Empresas y Estadística, Universidad Politécnica de Madrid,
c/ José Gutiérrez Abascal 2,
28006
Madrid,
Spain
7
Centro de Astrobiología (CSIC-INTA), ESAC,
Camino bajo del castillo s/n,
28692
Villanueva de la Cañada, Madrid,
Spain
8
Departamento de Ingeniería Mecánica, Universidad de la Rioja,
c/ San José de Calasanz 31,
26004
Logroño, La Rioja,
Spain
9
Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB,
c/ de Can Magrans s/n,
08193
Bellaterra, Barcelona,
Spain
10
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona,
Spain
11
Institut für Astrophysik und Geophysik, Georg-August-Universität,
Friedrich-Hund-Platz 1,
37077
Göttingen,
Germany
12
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg,
Königstuhl 12,
69117
Heidelberg,
Germany
13
Instituto de Astrofísica de Andalucía (IAA-CSIC),
Glorieta de la Astronomía s/n,
18008
Granada,
Spain
14
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg,
Germany
15
Department of Astronomy and Astrophysics, University of Chicago,
Chicago, IL
60637,
USA
16
Departamento de Física de la Tierra y Astrofísica and IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid,
28040
Madrid,
Spain
17
Centro Astronómico Hispano en Andalucía (CAHA), Observatorio de Calar Alto,
Sierra de los Filabres,
04550
Gérgal, Almería,
Spain
18
Centro de Astrobiología (CSIC-INTA),
Carretera de Ajalvir km 4, Torrejón de Ardoz,
28850
Madrid,
Spain
Received:
3
May
2022
Accepted:
21
March
2023
The large amounts of astrophysical data being provided by existing and future instrumentation require efficient and fast analysis tools. Transfer learning is a new technique promising higher accuracy in the derived data products, with information from one domain being transferred to improve the accuracy of a neural network model in another domain. In this work, we demonstrate the feasibility of applying the deep transfer learning (DTL) approach to high-resolution spectra in the framework of photospheric stellar parameter determination. To this end, we used 14 stars of the CARMENES survey sample with interferometric angular diameters to calculate the effective temperature, as well as six M dwarfs that are common proper motion companions to FGK-type primaries with known metallicity. After training a deep learning (DL) neural network model on synthetic PHOENIX-ACES spectra, we used the internal feature representations together with those 14+6 stars with independent parameter measurements as a new input for the transfer process. We compare the derived stellar parameters of a small sample of M dwarfs kept out of the training phase with results from other methods in the literature. Assuming that temperatures from bolometric luminosities and interferometric radii and metallicities from FGK+M binaries are sufficiently accurate, DTL provides a higher accuracy than our previous state-of-the-art DL method (mean absolute differences improve by 20 K for temperature and 0.2 dex for metallicity from DL to DTL when compared with reference values from interferometry and FGK+M binaries). Furthermore, the machine learning (internal) precision of DTL also improves as uncertainties are five times smaller on average. These results indicate that DTL is a robust tool for obtaining M-dwarf stellar parameters comparable to those obtained from independent estimations for well-known stars.
Key words: methods: data analysis / techniques: spectroscopic / stars: fundamental parameters / stars: late-type / stars: low-mass
Full Table A.1 is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/673/A105
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.