Issue |
A&A
Volume 672, April 2023
|
|
---|---|---|
Article Number | A176 | |
Number of page(s) | 27 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202245613 | |
Published online | 19 April 2023 |
Mass-ratio distribution of contact binary stars⋆
Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Praha 8 180 00, Czech Republic
e-mail: milan.pesta@utf.mff.cuni.cz
Received:
2
December
2022
Accepted:
1
February
2023
The mass ratio q of a contact binary star evolves through mass transfer, magnetic braking, and thermal relaxation oscillations to low values until it crosses a critical threshold qmin. When this occurs, the binary undergoes the tidal Darwin instability, leading to a rapid coalescence of the components and to an observable brightening of the system. The distribution of q has not been measured on a sufficiently large population of contact binary stars so far because determining q for a single contact binary usually requires spectroscopy. As was shown previously, however, it is possible to infer the mass-ratio distribution of the entire population of contact binaries from the observed distribution of their light-curve amplitudes. Employing Bayesian inference, we obtained a sample of contact binary candidates from the Kepler Eclipsing Binary Catalog combined with data from Gaia and estimates of effective temperatures. We assigned a probability of being a contact binary of either late or early type to each candidate. Overall, our sample includes about 300 late-type and 200 early-type contact binary candidates. We modeled the amplitude distribution assuming that mass ratios are described by a power law with an exponent b and a cutoff at qmin. We find qmin = 0.087−0.015+0.024 for late-type contact binaries with periods longer than 0.3 days. For late-type binaries with shorter periods, we find qmin = 0.246−0.046+0.029, but the sample is small. For early-type contact binary stars with periods shorter than one day, we obtain qmin = 0.030−0.022+0.018. These results indicate a dependence of qmin on the structure of the components, and they are broadly compatible with previous theoretical predictions. We do not find any clear trends in b. Our method can easily be extended to large samples of contact binaries from TESS and other space-based surveys.
Key words: stars: evolution / binaries: close / methods: statistical
Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/672/A176
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.