Issue |
A&A
Volume 672, April 2023
|
|
---|---|---|
Article Number | A24 | |
Number of page(s) | 16 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202245016 | |
Published online | 28 March 2023 |
The geometric albedo of the hot Jupiter HD 189733b measured with CHEOPS★,★★
1
Space Research Institute, Austrian Academy of Sciences,
Schmiedl-strasse 6,
8042
Graz, Austria
e-mail: andreas.krenn@oeaw.ac.at
2
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
1290
Versoix, Switzerland
3
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm, Sweden
4
Aix-Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille, France
5
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS, UK
6
Division Technique INSU,
CS20330,
83507
La-Seyne-sur-Mer cedex, France
7
ETH Zurich, Department of Physics,
Wolfgang-Pauli-Strasse 2,
8093
Zurich, Switzerland
8
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE, UK
9
Ludwig Maximilian University, University Observatory Munich,
Scheinerstrasse 1,
Munich
81679, Germany
10
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
11
University of Bern, ARTORG Center for Biomedical Engineering Research,
Murtenstrasse 50,
3008,
Bern, Switzerland
12
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto, Portugal
13
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto, Portugal
14
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
15
Physikalisches Institut, University of Bern,
Sidlerstrasse 5,
3012
Bern, Switzerland
16
Instituto de Astrofisica de Canarias,
38200
La Laguna, Tenerife, Spain
17
Departamento de Astrofisica, Universidad de La Laguna,
38206
La Laguna, Tenerife, Spain
18
Institut de Ciencies de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra, Spain
19
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
20
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc, Hungary
21
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA),
ESAC campus,
28692
Villanueva de la Cañada (Madrid), Spain
22
Almatech SA,
EPFL Innovation Park, Bâtiment D,
1015
Lausanne, Switzerland
23
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
24
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
25
Center for Space and Habitability,
Gesellsschaftstrasse 6,
3012
Bern, Switzerland
26
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
27
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris, France
28
ESTEC, European Space Agency,
2201AZ,
Noordwijk, The Netherlands
29
INAF, Osservatorio Astrofisico di Torino,
Via Osservatorio, 20,
10025
Pino Torinese To, Italy
30
Centre for Mathematical Sciences, Lund University,
Box 118,
221 00
Lund, Sweden
31
Astrobiology Research Unit, Université de Liège,
Allée du six Août 19C,
4000
Liège, Belgium
32
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du six Août 19C,
4000
Liège, Belgium
33
Centre Vie dans l’Univers, Faculté des sciences, Université de Genève,
Quai Ernest-Ansermet 30,
1211
Genève 4, Switzerland
34
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden, The Netherlands
35
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
439 92
Onsala, Sweden
36
Dipartimento di Fisica, Universita degli Studi di Torino,
via Pietro Giuria 1,
10125,
Torino, Italy
37
University of Vienna, Department of Astrophysics,
Türkenschanzs-trasse 17,
1180
Vienna, Austria
38
Science and Operations Department-Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201-AZ
Noordwijk, The Netherlands
39
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15–17, Hungary
40
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest, Hungary
41
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
42
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin,
Hardenbergstr. 36,
10623
Berlin, Germany
43
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin, Germany
44
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ.,
Sorbonne Univ., 77 av. Denfert-Rochereau,
75014
Paris, France
45
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie,
98bis bd. Arago,
75014
Paris, France
46
Astrophysics Group, Keele University,
Staffordshire,
ST5 5BG, UK
47
Physikalisches Institut, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
48
Department of Astrophysics, University of Vienna,
Tuerken-schanzstrasse 17,
1180
Vienna, Austria
49
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania, Italy
50
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova, Italy
51
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
52
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
53
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge,
CB3 0HA, UK
Received:
19
September
2022
Accepted:
15
December
2022
Context. Measurements of the occultation of an exoplanet at visible wavelengths allow us to determine the reflective properties of a planetary atmosphere. The observed occultation depth can be translated into a geometric albedo. This in turn aids in characterising the structure and composition of an atmosphere by providing additional information on the wavelength-dependent reflective qualities of the aerosols in the atmosphere.
Aims. Our aim is to provide a precise measurement of the geometric albedo of the gas giant HD 189733b by measuring the occultation depth in the broad optical bandpass of CHEOPS (350–1100 nm).
Methods. We analysed 13 observations of the occultation of HD 189733b performed by CHEOPS utilising the Python package PyCHEOPS. The resulting occultation depth is then used to infer the geometric albedo accounting for the contribution of thermal emission from the planet. We also aid the analysis by refining the transit parameters combining observations made by the TESS and CHEOPS space telescopes.
Results. We report the detection of an 24.7 ± 4.5 ppm occultation in the CHEOPS observations. This occultation depth corresponds to a geometric albedo of 0.076 ± 0.016. Our measurement is consistent with models assuming the atmosphere of the planet to be cloud-free at the scattering level and absorption in the CHEOPS band to be dominated by the resonant Na doublet. Taking into account previous optical-light occultation observations obtained with the Hubble Space Telescope, both measurements combined are consistent with a super-stellar Na elemental abundance in the dayside atmosphere of HD 189733b. We further constrain the planetary Bond albedo to between 0.013 and 0.42 at 3σ confidence.
Conclusions. We find that the reflective properties of the HD 189733b dayside atmosphere are consistent with a cloud-free atmosphere having a super-stellar metal content. When compared to an analogous CHEOPS measurement for HD 209458b, our data hint at a slightly lower geometric albedo for HD 189733b (0.076 ± 0.016) than for HD 209458b (0.096 ± 0.016), or a higher atmospheric Na content in the same modelling framework. While our constraint on the Bond albedo is consistent with previously published values, we note that the higher-end values of ~0.4, as derived previously from infrared phase curves, would also require peculiarly high reflectance in the infrared, which again would make it more difficult to disentangle reflected and emitted light in the total observed flux, and therefore to correctly account for reflected light in the interpretation of those phase curves. Lower reported values for the Bond albedos are less affected by this ambiguity.
Key words: planets and satellites: atmospheres / techniques: photometric / planets and satellites: individual: HD 189733b
The raw and detrended photometric time-series data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/672/A24
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.