Issue |
A&A
Volume 668, December 2022
|
|
---|---|---|
Article Number | A58 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202244604 | |
Published online | 02 December 2022 |
Structure and evolution of ultra-massive white dwarfs in general relativity⋆
1
Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
2
IALP-CCT – CONICET, Facultad de Ciencias Astronomicas y Geofisicas, Paseo del Bosque S/N, B1900FWA La Plata, Argentina
e-mail: althaus@fcaglp.unlp.edu.ar
3
Applied Mathematics Department, University of Colorado, Boulder, CO 80309-0526, USA
4
Departament de Física, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860 Castelldefels, Spain
5
Institute for Space Studies of Catalonia, c/Gran Capita 2–4, Edif. Nexus 104, 08034 Barcelona, Spain
6
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
Received:
26
July
2022
Accepted:
24
August
2022
Context. Ultra-massive white dwarfs (M⋆ ≳ 1.05 M⊙) are of utmost importance in view of the role they play in type Ia supernovae explosions, merger events, the existence of high-magnetic -field white dwarfs, and the physical processes in the super asymptotic giant branch phase.
Aims. We aim to present the first set of constant rest-mass ultra-massive oxygen-neon white dwarf cooling tracks with masses of M⋆ > 1.29 M⊙ which fully take into account the effects of general relativity on their structural and evolutionary properties.
Methods. We computed the full evolution sequences of 1.29, 1.31, 1.33, 1.35, and 1.369 M⊙ white dwarfs with the La Plata stellar evolution code, LPCODE. For this work, the standard equations of stellar structure and evolution have been modified to include the effects of general relativity. Specifically, the fully general relativistic partial differential equations governing the evolution of a spherically symmetric star are solved in a way so that they resemble the standard Newtonian equations of stellar structure. For comparison purposes, the same sequences have been computed for the Newtonian case.
Results. According to our calculations, the evolutionary properties of the most massive white dwarfs are strongly modified by general relativity effects. In particular, the resulting stellar radius is markedly smaller in the general relativistic case, being up to 25% smaller than predicted by the Newtonian treatment for the more massive ones. We find that oxygen-neon white dwarfs more massive than 1.369 M⊙ become gravitationally unstable with respect to general relativity effects. When core chemical distribution due to phase separation on crystallization is considered, such instability occurs at somewhat lower stellar masses, ≳1.36 M⊙. In addition, cooling times for the most massive white dwarf sequences are about a factor of two smaller than in the Newtonian case at advanced stages of evolution. Finally, a sample of white dwarfs have been identified as ideal candidates to test these general relativistic effects.
Conclusions. We conclude that the general relativity effects should be taken into account for an accurate assessment of the structural and evolutionary properties of the most massive white dwarfs. These new ultra-massive white dwarf models constitute a considerable improvement over those computed in the framework of the standard Newtonian theory of stellar interiors.
Key words: stars: evolution / stars: interiors / white dwarfs
The cooling sequences are publicly available at http://evolgroup.fcaglp.unlp.edu.ar/TRACKS/tracks.html
© L. G. Althaus et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.