Issue |
A&A
Volume 668, December 2022
|
|
---|---|---|
Article Number | A95 | |
Number of page(s) | 23 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202244453 | |
Published online | 08 December 2022 |
Mapping Milky Way disk perturbations in stellar number density and vertical velocity using Gaia DR3
1
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen N, Denmark
e-mail: axel.widmark@nbi.ku.dk
2
Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston K7L 3X5, Canada
3
School of Physics & Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Received:
7
July
2022
Accepted:
27
October
2022
We have mapped the number density and mean vertical velocity of the Milky Way’s stellar disk out to roughly two kiloparsecs from the Sun using Gaia Data Release 3 (DR3) and complementary photo-astrometric distance information from StarHorse. For the number counts, we carefully masked spatial regions that are compromised by open clusters, great distances, or dust extinction and used Gaussian processes to arrive at a smooth, non-parametric estimate for the underlying number density field. We find that the number density and velocity fields depart significantly from an axisymmetric and mirror-symmetric model. These departures, which include projections of the Gaia phase-space spiral, signal the presence of local disturbances in the disk. We identify two features that are present in both stellar number density and mean vertical velocity. One of these features appears to be associated with the Local Spiral Arm. It is most prominent at small heights and is largely symmetric across the mid-plane of the disk. The density and velocity field perturbations are phase-shifted by roughly a quarter wavelength, suggesting a breathing mode that is propagating in the direction of Galactic longitude l ∼ 270 deg. The second feature is a gradient in the stellar number density and mean vertical velocity with respect to galactocentric radius. This feature, which extends across the entire region of our analysis, may be associated with the extension of the Galactic warp into the solar neighbourhood in combination with more localised bending waves.
Key words: Galaxy: kinematics and dynamics / Galaxy: disk / solar neighborhood / astrometry
© The Authors 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.