Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | L15 | |
Number of page(s) | 9 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202244221 | |
Published online | 29 August 2022 |
Letter to the Editor
A stellar occultation by the transneptunian object (50000) Quaoar observed by CHEOPS⋆⋆,⋆
1
Universidade Federal do Rio de Janeiro – Observatório do Valongo, Ladeira Pedro Antônio 43, CEP 20.080-090 Rio de Janeiro, Brazil
e-mail: bmorgado@ov.ufrj.br
2
Observatório Nacional/MCTI, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, Brazil
3
Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro 20921-400, Brazil
4
INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
5
Institute of Physics, Federal University of Uberlândia, Uberlândia-MG, Brazil
6
UNESP – São Paulo State University, Grupo de Dinâmica Orbital e Planetologia, CEP 12516-410 Guaratinguetá, SP, Brazil
7
LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université de Paris, CNRS, 92190 Meudon, France
8
Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
9
Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
10
Institut Polytechnique des Sciences Avancées IPSA, 63 Boulevard de Brandebourg, 94200 Ivry-sur-Seine, France
11
Institut de Mécanique Céleste et de Calcul des Éphémérides, IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ. Lille, 77, Av. Denfert-Rochereau, 75014 Paris, France
12
Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK
13
Federal University of Technology – Paraná (UTFPR/DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901 Curitiba, PR, Brazil
14
ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 2, 8093 Zurich, Switzerland
15
Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
16
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
17
Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
18
Department of Astronomy, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden
19
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
20
Observatoire Astronomique de l’Université de Genève, Chemin Pegasi 51, Versoix, Switzerland
21
Observatoire de la Côte d’Azur, Laboratoire Lagrange UMR7293 CNRS, Nice, France
22
NaXys, University of Namur, 8 Rempart de la Vierge, Namur 5000, Belgium
23
Science and Operations Department – Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 Noordwijk, The Netherlands
24
Reedy Creek Observatory, Gold Coast, Queensland, Australia
25
Trans-Tasman Occultation Alliance (TTOA), PO Box 3181, Wellington, New Zealand
26
Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife, Spain
27
Departamento de Astrofisica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
28
Institut de Ciencies de l’Espai (ICE, CSIC), Campus UAB, Can Magrans s/n, 08193 Bellaterra, Spain
29
Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
30
Admatis, 5. Kandó Kálmán Street, 3534 Miskolc, Hungary
31
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA), ESAC Campus, 28692 Villanueva de la Cañada, Madrid, Spain
32
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
33
Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
34
Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
35
Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany
36
Université de Paris, Institut de physique du globe de Paris, CNRS, 75005 Paris, France
37
Centre for Mathematical Sciences, Lund University, Box 118 221 00 Lund, Sweden
38
Aix Marseille Univ, CNRS, CNES, LAM, 38 Rue Frédéric Joliot-Curie, 13388 Marseille, France
39
Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium
40
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium
41
Leiden Observatory, University of Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands
42
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden
43
Dipartimento di Fisica, Universita degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
44
University of Vienna, Department of Astrophysics, Türkenschanzstrasse 17, 1180 Vienna, Austria
45
Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
46
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, 1121 Budapest, Hungary
47
ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
48
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ., 77 av. Denfert-Rochereau, 75014 Paris, France
49
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis blvd. Arago, 75014 Paris, France
50
INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy
51
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna, Austria
52
Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany
53
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy
54
ESTEC, European Space Agency, 2201 AZ Noordwijk, NL, The Netherlands
55
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
56
Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany
57
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory, Szent Imre h. u. 112, 9700 Szombathely, Hungary
58
MTA-ELTE Exoplanet Research Group, Szent Imre h. u. 112, 9700 Szombathely, Hungary
59
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Received:
8
June
2022
Accepted:
9
August
2022
Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric accuracy as they are not affected by atmospheric scintillation.
Aims. Using ESA’s CHEOPS space telescope, we observed a stellar occultation by the transneptunian object (50000) Quaoar. We compare the obtained chord with previous occultations by this object and determine its astrometry with sub-milliarcsecond precision. Also, we determine upper limits to the presence of a global methane atmosphere on the occulting body.
Methods. We predicted and observed a stellar occultation by Quaoar using the CHEOPS space telescope. We measured the occultation light curve from this dataset and determined the dis- and reappearance of the star behind the occulting body. Furthermore, a ground-based telescope in Australia was used to constrain Quaoar’s limb. Combined with results from previous works, these measurements allowed us to obtain a precise position of Quaoar at the occultation time.
Results. We present the results obtained from the first stellar occultation by a transneptunian object using a space telescope orbiting Earth; it was the occultation by Quaoar observed on 2020 June 11. We used the CHEOPS light curve to obtain a surface pressure upper limit of 85 nbar for the detection of a global methane atmosphere. Also, combining this observation with a ground-based observation, we fitted Quaoar’s limb to determine its astrometric position with an uncertainty below 1.0 mas.
Conclusions. This observation is the first of its kind, and it shall be considered as a proof of concept of stellar occultation observations of transneptunian objects with space telescopes orbiting Earth. Moreover, it shows significant prospects for the James Webb Space Telescope.
Key words: methods: observational / techniques: photometric / occultations / minor planets / asteroids: individual: Quaoar
The light curves and the fitted models are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/664/L15
© B. Morgado et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.