Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | A87 | |
Number of page(s) | 15 | |
Section | Celestial mechanics and astrometry | |
DOI | https://doi.org/10.1051/0004-6361/202243344 | |
Published online | 11 August 2022 |
Resonance capture and long-term evolution of planets in binary star systems
NaXys, Department of Mathematics, University of Namur,
61 Rue de Bruxelles,
5000
Namur, Belgium
e-mail: arnaud.roisin@unamur.be
Received:
16
February
2022
Accepted:
13
June
2022
Aims. The growing population of planets discovered in orbit around one stellar component of a binary star raises the question of the influence of the binary companion on the formation process of planetary systems. The aim of this work is to study the impact of a binary companion on the evolution of two-planet systems during both the Type-II migration phase and their long-term evolution after the dissipation of the protoplanetary disk.
Methods. We used the symplectic integrator SyMBA, modified to include a wide binary companion. We also included the Type-II migration of giant planets during the protoplanetary disk phase with suitable eccentricity and inclination damping as well as the gravitational potential acting on the planets due to the disk and the nodal precession of the disk induced by the binary companion. We considered various inclinations, eccentricities, and separations of the binary companion.
Results. Disk migration allows for the formation of planet pairs in mean-motion resonances despite the presence of the binary companion. When the binary separation is wide (1000 au), the timescale of the perturbations that it raises on the planets is longer than the disk’s lifetime and resonant pairs are routinely formed in the 2:1, 5:2, and 3:1 commensurabilities. Provided the planet-planet interaction timescale is smaller than the timescale of binary perturbations, these systems can remain in resonance long after the disk has dissipated. When the binary separation is smaller (250 au), only planets in the 2:1 resonance tend to remain in a resonant state and more chaotic evolutions are observed, as well as more ejections. After those ejections, the remaining planet can become eccentric due to the perturbations from the binary companion in addition, for strongly inclined binary companions, captures in the von Ziepel-Lidov-Kozai resonance can occur. Whereas in systems with two planets, this mechanism is quenched by planet-planet interactions. Our simulations reveal that the interplay between planet-disk, planet-planet, and planet-binary interactions can lead to the formation of resonant pairs of planets which remain stable over timescales much longer than the disk’s lifetime.
Key words: planet-disk interactions / planet-star interactions / binaries: general / planets and satellites: dynamical evolution and stability / planets and satellites: formation
© A. Roisin et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.