Issue |
A&A
Volume 663, July 2022
|
|
---|---|---|
Article Number | A136 | |
Number of page(s) | 6 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202243312 | |
Published online | 26 July 2022 |
Enhanced reactivity of oxygen-functionalised PAHs with atomic hydrogen – A route to the formation of small oxygen-carrying molecules
1
Center for Interstellar Catalysis (InterCat), Department of Physics and Astronomy, Aarhus University,
Ny Munkegade 120, Aarhus C,
8000
Denmark
2
Interdisciplinary Nano-Science Centre (iNano), Aarhus University,
Gustav Wieds Vej 14, Aarhus C,
8000
Denmark
e-mail: liv@phys.au.dk
Received:
11
February
2022
Accepted:
4
June
2022
Aims. We investigate the interaction of a linear, catacondensed polycyclic aromatic hydrocarbon (PAH), pentacene (C22H14), and its oxygen-functionalised form 6, 13 pentacenequinone (C22H12O2) with atomic hydrogen (H) under interstellar conditions. We compare their reaction cross-sections and reaction products to elucidate the possible role played by oxygen-functionalised PAHs in the formation of small oxygen-carrying molecules in the interstellar medium.
Methods. We present temperature-programmed desorption measurements in combination with mass spectrometry. The evolution of the mass distribution of the desorbed species with increasing H-atom fluence and their peak desorption temperatures give insight into the reaction products.
Results. The experiments reveal reaction cross-sections that are significantly larger for the oxygen-functionalised species compared to pentacene. For both pentacene and 6, 13 pentacenequinone, hydrogenated species with an even number of excess H-atoms dominate over hydrogenated species with an odd number of H-atoms. The end product, after exposure to large H-atom fluences, for both pentacene and PQ is fully superhydrogenated pentacene (C22H36), with little evidence for any remaining oxygen-containing species. This suggests the release of small molecules such as OH and/or H2O by the abstraction of oxygen atoms during hydrogenation, indicating that oxygen-functionalised PAHs can enable the formation of small oxygen-bearing molecules under interstellar conditions.
Key words: astrochemistry / molecular processes / methods: laboratory: molecular / methods: laboratory: solid state / ISM: molecules
© R. Jaganathan et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.