Issue |
A&A
Volume 663, July 2022
|
|
---|---|---|
Article Number | A127 | |
Number of page(s) | 9 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202243115 | |
Published online | 21 July 2022 |
Growth of a filament channel by intermittent small-scale magnetic reconnection⋆
1
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, PR China
e-mail: xincheng@nju.edu.cn
2
Max Planck Institute for Solar System Research, Gottingen 37077, Germany
3
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing, 210023, PR China
4
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, PR China
Received:
14
January
2022
Accepted:
15
March
2022
Context. A filament channel (FC), a plasma volume where the magnetic field is primarily aligned with the polarity inversion line, is believed to be the pre-eruptive configuration of coronal mass ejections. Nevertheless, evidence for how the FC is formed is still elusive.
Aims. In this paper, we present a detailed study of the build-up of a FC in order to understand its formation mechanism.
Methods. The New Vacuum Solar Telescope (NVST) of the Yunnan Observatory and the Optical and Near-infrared Solar Eruption Tracer (ONSET) of Nanjing University, as well as the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), are used to study the growth process of the FC. Furthermore, we reconstruct the nonlinear force-free field (NLFFF) of the active region using the regularized Biot-Savart laws (RBSL) and the magnetofrictional method to reveal the three-dimensional (3D) magnetic field properties of the FC.
Results. We find that partial filament materials are quickly transferred to longer magnetic field lines formed by small-scale magnetic reconnection, as evidenced by dot-like Hα and extreme ultraviolet (EUV) brightenings and subsequent bidirectional outflow jets, as well as untwisting motions. The Hα and EUV bursts appear repeatedly at the same location and are closely associated with flux cancelation, which occurs between two small-scale opposite polarities and is driven by shearing and converging motions. The 3D NLFFF model reveals that the reconnection takes place in a hyperbolic flux tube that is located above the flux-cancelation site and below the FC.
Conclusions. The FC is gradually built up toward a twisted flux rope via a series of small-scale reconnection events that occur intermittently prior to the eruption.
Key words: Sun: activity / Sun: filaments / prominences / Sun: magnetic fields
Movie associated to Fig. 3 is available at https://www.aanda.org
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.