Issue |
A&A
Volume 663, July 2022
|
|
---|---|---|
Article Number | A15 | |
Number of page(s) | 18 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202142819 | |
Published online | 01 July 2022 |
Weighing the Galactic disk using phase-space spirals
III. Probing distant regions of the disk using the Gaia EDR3 proper motion sample
1
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen N, Denmark
e-mail: axel.widmark@nbi.ku.dk
2
Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain
3
Université de Strasbourg, CNRS UMR 7550, Observatoire astronomique de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
Received:
3
December
2021
Accepted:
21
March
2022
We have applied our method to weigh the Galactic disk using phase-space spirals to the proper motion sample of Gaia’s early third release (EDR3). For stars in distant regions of the Galactic disk, the latitudinal proper motion has a close projection with vertical velocity, such that the phase-space spiral in the plane of vertical position and vertical velocity can be observed without requiring that all stars have available radial velocity information. We divided the Galactic plane into 360 separate data samples, each corresponding to an area cell in the Galactic plane in the distance range of 1.4–3.4 kpc, with an approximate cell length of 200–400 pc. Roughly half of our data samples were disqualified altogether due to severe selection effects, especially in the direction of the Galactic centre. In the remainder, we were able to infer the vertical gravitational potential by fitting an analytic model of the phase-space spiral to the data. This work is the first of its kind, in the sense that we are weighing distant regions of the Galactic disk with a high spatial resolution, without relying on the strong assumptions of axisymmetry. Post-inference, we fitted a thin disk scale length of 2.2 ± 0.1 kpc, although this value is sensitive to the considered spatial region. We see surface density variations as a function of azimuth of the order of 10–20%, which is roughly the size of our estimated sum of potential systematic biases. With this work, we have demonstrated that our method can be used to weigh distant regions of the Galactic disk despite strong selection effects. We expect to reach even greater distances and improve our accuracy with future Gaia data releases and further improvements to our method.
Key words: Galaxy: kinematics and dynamics / Galaxy: disk / solar neighborhood / astrometry
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.