Issue |
A&A
Volume 662, June 2022
|
|
---|---|---|
Article Number | A21 | |
Number of page(s) | 8 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/202243087 | |
Published online | 06 June 2022 |
Gas-phase reaction of fullerene monocations with 2,3-benzofluorene indicates the importance of charge exchanges
1
CAS Key Laboratory of Crust-Mantle Materials and Environment, University of Science and Technology of China,
Hefei
230026,
PR China
e-mail: jfzhen@ustc.edu.cn
2
CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China,
Hefei
230026,
PR China
3
CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China,
Hefei
230026,
PR China
4
CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China,
Hefei
230026,
PR China
Received:
11
January
2022
Accepted:
20
April
2022
Fullerene and polycyclic aromatic hydrocarbon (PAH) molecules, as well as their cations and clusters, are of great interest in astrochemistry. In this work, the ion-molecule collision reaction between fullerene (e.g. a C54/56/58 and C60 system or a C64/66/68 and C70 system) monocations and neutral PAHs (e.g. 2,3-benzofluorene, C17H12) is studied in the gas phase to determine the importance of charge exchanges and to illustrate the competition between charge transfer and molecular adduct formation channels. The experimental results show that the charge transfer channel is the dominant channel (i.e. charge exchange) in the reaction between fullerene (C60 and C70) monocations and 2,3-benzofluorene, while the molecular adduct formation channels are the dominant channels in the reaction between fullerene (C54/56/58 and C64/66/68) monocations and 2,3-benzofluorene. The observed reaction behaviours are investigated with quantum calculations, and the CH2 unit binding effect of 2,3-benzofluorene is determined to be the main reason for the results. Our findings on the ion-molecule collision reaction between fullerene monocations and 2,3-benzofluorene provide a good model for understanding the physical-chemical processes of the charge transfer channel and the cluster adduct formation channels. Neutral fullerenes (C60 and C70) increase the abundance of their monocations through collision reactions with coexisting neutral molecules in the interstellar medium.
Key words: astrochemistry / molecular processes / methods: laboratory: molecular / ISM: molecules / photon-dominated region (PDR)
© C. Zhang et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.