Issue |
A&A
Volume 662, June 2022
|
|
---|---|---|
Article Number | A34 | |
Number of page(s) | 21 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202143009 | |
Published online | 08 June 2022 |
Microlensing and the type Ia supernova iPTF16geu
1
Instituto de Física de Cantabria (CSIC-UC), Avda. Los Castros s/n, 39005 Santander, Spain
e-mail: jdiego@ifca.unican.es
2
Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St, Philadelphia, PA 19104, USA
3
School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
4
The Oskar Klein Centre, Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
5
Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
Received:
27
December
2021
Accepted:
23
March
2022
The observed magnifications and light curves of the quadruply imaged iPTF16geu supernova (SN) offers a unique opportunity to study a lens system with a variety of independent constraints. The four observed positions can be used to constrain the macrolens model. The magnifications and light curves at the four SN positions are more useful to constrain microlensing models. We define the macrolens model as a combination of a baryonic component that traces the observed light distribution, and a dark matter halo component. We constrained the macrolens model using the positional constraints given by the four observed images, and compared it with the best model obtained when magnification constraints were included. We found that the magnification cannot be explained by a macrolens model alone, and that contributions from substructures such as microlenses are needed to explain the observed magnifications. We considered microlens models based on the inferred stellar mass from the baryonic component of the macrolens model, and used the observed magnification and light curves to constrain the contribution from microlenses. We computed the likelihood of a variety of macro and micro lens models where we varied the dark matter halo, baryonic component, and microlens configurations. We used information about the position, magnification, and, for the first time, the light curves of the four observed SN images. We combined macrolens and microlens models in order to reproduce the observations; the four SN positions, magnifications, and lack of fluctuations in the light curves. After marginalizing over the model parameters, we found that larger stellar surface mass densities are preferred. This result suggests that the mass of the baryonic component is dominated by its stellar component. We conclude that microlensing from the baryonic component suffices to explain the observed flux ratios and light curves.
Key words: gravitational lensing: strong / gravitational lensing: micro / supernovae: individual: iPTF16geu / dark matter
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.