Issue |
A&A
Volume 661, May 2022
|
|
---|---|---|
Article Number | A155 | |
Number of page(s) | 10 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202243433 | |
Published online | 25 May 2022 |
Determination of coronal mass ejection orientation and consequences for their propagation
1
Hvar Observatory, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
e-mail: kmartinic@geof.hr
2
Institute of Physics, University of Graz, Graz, Austria
3
Kanzelhöhe Observatory for Solar and Environmental Research, University of Graz, Graz, Austria
Received:
28
February
2022
Accepted:
12
April
2022
Context. The configuration of the interplanetary magnetic field and features of the related ambient solar wind in the ecliptic and meridional plane are different. Therefore, one can expect that the orientation of the flux-rope axis of a coronal mass ejection (CME) influences the propagation of the CME itself. However, the determination of the CME orientation, especially from image data, remains a challenging task to perform.
Aim. This study aims to provide a reference to different CME orientation determination methods in the near-Sun environment. Also, it aims to investigate the non-radial flow in the sheath region of the interplanetary CME (ICME) in order to provide the first proxy to relate the ICME orientation with its propagation.
Methods. We investigated 22 isolated CME-ICME events in the period 2008–2015. We determined the CME orientation in the near-Sun environment using the following: (1) a 3D reconstruction of the CME with the graduated cylindrical shell (GCS) model applied to coronagraphic images provided by the STEREO and SOHO missions; and (2) an ellipse fitting applied to single spacecraft data from SOHO/LASCO C2 and C3 coronagraphs. In the near-Earth environment, we obtained the orientation of the corresponding ICME using in situ plasma and field data and also investigated the non-radial flow in its sheath region.
Results. The ability of GCS and ellipse fitting to determine the CME orientation is found to be limited to reliably distinguish only between the high or low inclination of the events. Most of the CME-ICME pairs under investigation were found to be characterized by a low inclination. For the majority of CME-ICME pairs, we obtain consistent estimations of the tilt from remote and in situ data. The observed non-radial flows in the sheath region show a greater y direction to z direction flow ratio for high-inclination events, indicating that the CME orientation could have an impact on the CME propagation.
Key words: Sun: coronal mass ejections (CMEs) / magnetohydrodynamics (MHD) / Sun: heliosphere
© K. Martinić 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.