Issue |
A&A
Volume 659, March 2022
|
|
---|---|---|
Article Number | A104 | |
Number of page(s) | 21 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202142702 | |
Published online | 11 March 2022 |
A new estimation of astrometric exoplanet detection limits in the habitable zone around nearby stars
1
Univ. Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
e-mail: nadege.meunier@univ-grenoble-alpes.fr
2
LESIA (UMR 8109), Observatoire de Paris, PSL Research University, CNRS, UMPC, Univ. Paris Diderot,
5 Place Jules Janssen,
92195
Meudon,
France
Received:
19
November
2021
Accepted:
27
January
2022
Context. Astrometry is less sensitive to stellar activity than the radial velocity technique when attempting to detect Earth mass planets in the habitable zone of solar-type stars. This is due to a smaller number of physical processes affecting the signal, and a larger ratio of the amplitude of the planetary signal to the stellar signal than with radial velocities. A few high-precision astrometric missions have therefore been proposed over the past two decades.
Aims. We aim to re-estimate the detection limits in astrometry for the nearby stars which are the main targets proposed for the THEIA astrometric mission, which is the most elaborate mission to search for planets, and to characterise its performance on the fitted parameters. This analysis is performed for the 55 F-G-K stars in the THEIA sample.
Methods. We used realistic simulations of stellar activity and selected those that correspond best to each star in terms of spectral type and average activity level. Then, we performed blind tests to estimate the performance.
Results. We find worse detection limits compared to those previously obtained for that sample based on a careful analysis of the false positive rate, with values typically in the Earth-mass regime for most stars of the sample. The difference is attributed to the fact that we analysed full time series, adapted to each star in the sample, rather than using the expected solar jitter only. Although these detection limits have a relatively low signal-to-noise ratio, the fitted parameters have small uncertainties.
Conclusions. We confirm the low impact of stellar activity on exoplanet detectability for solar-type stars, although it plays a significant role for the closest stars such as α Cen A and B. We identify the best targets to be the stars with a close habitable zone. However, for the few stars in the sample with a habitable zone corresponding to long periods, namely subgiants, the THEIA observational strategy is not well adapted and should prevent the detection of planets in the habitable zone, unless a longer mission can be proposed.
Key words: astrometry / stars: activity / stars: solar-type / planetary systems / planets and satellites: detection
© N. Meunier and A.-M. Lagrange 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.