Issue |
A&A
Volume 654, October 2021
|
|
---|---|---|
Article Number | A148 | |
Number of page(s) | 14 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202141353 | |
Published online | 26 October 2021 |
Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data⋆
1
Instituto de Física Teórica UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
e-mail: matteo.martinelli@uam.es
2
Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
3
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal
4
Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
5
Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, CNRS, UPS, CNES, 14 Av. Edouard Belin, 31400 Toulouse, France
6
Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran Capitá 2-4, 08034 Barcelona, Spain
7
INFN-Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
8
Dipartimento di Fisica, Universitá degli Studi di Torino, Via P. Giuria 1, 10125 Torino, Italy
9
INAF-Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese, TO, Italy
10
INAF-IASF Milano, Via Alfonso Corti 12, 20133 Milano, Italy
11
AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, 91191 Gif-sur-Yvette, France
12
Université St Joseph; UR EGFEM, Faculty of Sciences, Beirut, Lebanon
13
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
14
Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago, Chile
15
Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
16
INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy
17
Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching, Germany
18
INFN-Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
19
Department of Mathematics and Physics, Roma Tre University, Via della Vasca Navale 84, 00146 Rome, Italy
20
Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
21
INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monteporzio Catone, Italy
22
Department of Physics “E. Pancini”, University Federico II, Via Cinthia 6, 80126 Napoli, Italy
23
INFN section of Naples, Via Cinthia 6, 80126 Napoli, Italy
24
INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy
25
Dipartimento di Fisica e Astronomia ‘Augusto Righi’ – Alma Mater Studiorum Universitá di Bologna, Via Piero Gobetti 93/2, 40129 Bologna, Italy
26
INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
27
Institut national de physique nucléaire et de physique des particules, 3 rue Michel-Ange, 75794 Paris Cédex 16, France
28
Centre National d’Etudes Spatiales, Toulouse, France
29
Aix-Marseille Univ, CNRS, CNES, LAM, Marseille, France
30
Department of Astronomy, University of Geneva, ch. d’Écogia 16, 1290 Versoix, Switzerland
31
Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, 91405 Orsay, France
32
INFN-Padova, Via Marzolo 8, 35131 Padova, Italy
33
Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, 69622 Villeurbanne, France
34
INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34131 Trieste, Italy
35
Istituto Nazionale di Astrofisica (INAF) – Osservatorio di Astrofisica e Scienza dello Spazio (OAS), Via Gobetti 93/3, 40127 Bologna, Italy
36
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy
37
INAF-Osservatorio Astronomico di Padova, Via dell’Osservatorio 5, 35122 Padova, Italy
38
Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, 81679 München, Germany
39
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029, Blindern, 0315 Oslo, Norway
40
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
41
von Hoerner and Sulger GmbH, SchloßPlatz 8, 68723 Schwetzingen, Germany
42
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
43
Université de Genève, Département de Physique Théorique and Centre for Astroparticle Physics, 24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland
44
Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, 00014 University of Helsinki, Finland
45
NOVA optical infrared instrumentation group at ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
46
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
47
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
48
INFN-Bologna, Via Irnerio 46, 40126 Bologna, Italy
49
Observatoire de Sauverny, Ecole Polytechnique Fédérale de Lau- sanne, 1290 Versoix, Switzerland
50
INFN-Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
51
European Space Agency/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
52
Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, 8000 Aarhus C, Denmark
53
Institute of Space Science, Bucharest 077125, Romania
54
Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
55
Instituto de Astrofísica de Canarias, Calle Vía Làctea s/n, 38204 San Cristóbal de la Laguna, Tenerife, Spain
56
Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
57
Dipartimento di Fisica e Astronomia “G. Galilei”, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy
58
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
59
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal
60
Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, 1749-016 Lisboa, Portugal
61
Universidad Politécnica de Cartagena, Departamento de Electrónica y Tecnología de Computadoras, 30202 Cartagena, Spain
62
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
63
Dipartimento di Fisica e Astronomia, Universitá di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy
64
European Space Agency/ESRIN, Largo Galileo Galilei 1, 00044 Frascati, Roma, Italy
65
ESAC/ESA, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spain
66
School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
67
INAF-IASF Bologna, Via Piero Gobetti 101, 40129 Bologna, Italy
68
APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
69
Space Science Data Center, Italian Space Agency, Via del Politecnico snc, 00133 Roma, Italy
Received:
20
May
2021
Accepted:
19
August
2021
In physically realistic, scalar-field-based dynamical dark energy models (including, e.g., quintessence), one naturally expects the scalar field to couple to the rest of the model’s degrees of freedom. In particular, a coupling to the electromagnetic sector leads to a time (redshift) dependence in the fine-structure constant and a violation of the weak equivalence principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, α, and local experimental constraints, and it includes both parametric and non-parametric methods. For the astrophysical measurements of α, we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements that are expected to be available in the 2030s. Our parametric analysis shows that in the latter case, the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between 8% and 26%, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.
Key words: cosmology: observations / cosmological parameters / space vehicles: instruments / methods: data analysis / methods: statistical / surveys
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.