Issue |
A&A
Volume 653, September 2021
|
|
---|---|---|
Article Number | A56 | |
Number of page(s) | 9 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202140901 | |
Published online | 09 September 2021 |
An advanced multipole model for (216) Kleopatra triple system★
1
Institute of Astronomy, Faculty of Mathematics and Physics, Charles University,
V Holešovičkách 2,
18000
Prague, Czech Republic
e-mail: mira@sirrah.troja.mff.cuni.cz
2
SETI Institute, Carl Sagan Center,
189 Bernado Avenue,
Mountain View CA
94043, USA
3
Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille,
Marseille, France
4
IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ. Lille, France
5
Department of Earth, Atmospheric and Planetary Sciences, MIT,
77 Massachusetts Avenue,
Cambridge,
MA 02139, USA
6
Mathematics & Statistics, Tampere University,
PO Box 553,
33101
Tampere, Finland
7
Space sciences, Technologies and Astrophysics Research Institute, Université de Liège,
Allée du 6 Août 17,
4000
Liège, Belgium
8
Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University,
ul. Słoneczna 36,
60-286
Poznań, Poland
9
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS,
Laboratoire Lagrange, France
10
Observatoire du Bois de Bardon,
16110
Taponnat, France
11
Astronomical Institute of Romanian Academy,
5, Cutitul de Argint Street,
040557
Bucharest, Romania
12
Thirty-Meter-Telescope,
100 West Walnut St, Suite 300,
Pasadena,
CA 91124, USA
13
Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive,
Pasadena,
CA 91109, USA
14
European Space Agency, ESTEC - Scientific Support Office,
Keplerlaan 1,
Noordwijk
2200 AG, The Netherlands
15
The French Aerospace Lab BP72,
29 avenue de la Division Leclerc,
92322
Chatillon Cedex, France
16
Open University, School of Physical Sciences, The Open University,
MK7 6AA, UK
17
Laboratoire Atmosphères, Milieux et Observations Spatiales, CNRS & Université de Versailles Saint-Quentin-en-Yvelines, Guyancourt, France
18
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú,
Apartado 1761,
Lima, Peru
19
Departamento de Fisica, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Alicante, Spain
20
Institut de Ciéncies del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB),
Martí Franqués 1,
08028
Barcelona, Spain
21
European Southern Observatory (ESO),
Alonso de Cordova 3107,
1900
Casilla Vitacura,
Santiago, Chile
Received:
26
March
2021
Accepted:
28
April
2021
Aims. To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons orbiting an extremely irregular body and include their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not constants.
Methods. Consequently, we used a modified N-body integrator, which was significantly extended to include the multipole expansion of the gravitational field up to the order ℓ = 10. Its convergence was verified against the ‘brute-force’ algorithm. We computed the coefficients Cℓm, Sℓm for Kleopatra’s shape, assuming a constant bulk density. For Solar System applications, it was also necessary to implement a variable distance and geometry of observations. Our χ2 metric then accounts for the absolute astrometry, the relative astrometry (second moon with respect to the first), angular velocities, and silhouettes, constraining the pole orientation. This allowed us to derive the orbital elements of Kleopatra’s two moons.
Results. Using both archival astrometric data and new VLT/SPHERE observations (ESO LP 199.C-0074), we were able to identify the true periods of the moons, P1 = (1.822359 ± 0.004156) d, P2 = (2.745820 ± 0.004820) d. They orbit very close to the 3:2 mean-motion resonance, but their osculating eccentricities are too small compared to other perturbations (multipole, mutual), meaning that regular librations of the critical argument are not present. The resulting mass of Kleopatra, m1 = (1.49 ± 0.16) × 10−12 M⊙ or 2.97 × 1018 kg, is significantly lower than previously thought. An implication explained in the accompanying paper is that (216) Kleopatra is a critically rotating body.
Key words: minor planets, asteroids: individual: (216) Kleopatra / planets and satellites: fundamental parameters / astrometry / celestial mechanics / methods: numerical
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.