Issue |
A&A
Volume 651, July 2021
|
|
---|---|---|
Article Number | A117 | |
Number of page(s) | 21 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202140483 | |
Published online | 29 July 2021 |
A systematic study of silicate absorption features in heavily obscured AGNs observed by Spitzer/IRS
1
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
e-mail: tsuchikawa@u.phys.nagoya-u.ac.jp
2
Institute of Liberal Arts and Sciences, Tokushima University, 1-1 Minami-Jyosanjima, Tokushima-shi, Tokushima 770-8502, Japan
3
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
4
Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
5
Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
6
Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
Received:
3
February
2021
Accepted:
7
May
2021
Context. Heavily obscured active galactic nuclei (AGNs) are known to show deep silicate absorption features in the mid-infrared (mid-IR) wavelength range of 10–20 μm. The detailed profiles of the features reflect the properties of silicate dust, which are likely to include information on AGN activities obscured by large amounts of dust.
Aims. We reveal AGN activities obscured by large amounts of dust through the silicate dust properties obtained from the mid-IR spectral bands.
Methods. We selected 115 mid-IR spectra of heavily obscured AGNs observed by Spitzer/IRS and systematically analyzed the composition of silicate dust by spectral fitting using the 10 μm amorphous and 23 μm crystalline bands.
Results. We find that the main component of the silicate dust obscuring AGNs is amorphous olivine, the median mass column density of which is one order of magnitude higher than those of the minor components of amorphous pyroxene and crystalline forsterite. The median mass fraction of the amorphous pyroxene, ∼2%, is significantly lower than that of the diffuse interstellar medium (ISM) dust in our Galaxy, while the median mass fraction of the crystalline forsterite, ∼6%, is higher than that of the diffuse ISM dust. We also find that the mass fractions of the amorphous pyroxene and the crystalline forsterite positively correlate with each other.
Conclusions. The low mass fraction of the amorphous pyroxene suggests that the obscuring silicate dust is newly formed, originating from starburst activities. The relatively high mass fraction of crystalline forsterite implies that the silicate dust is processed in the high temperature environment close to the nucleus and transported to outer cooler regions by molecular outflows. The positive correlation between the mass fractions can be naturally explained considering that amorphous pyroxene is transformed from crystalline forsterite by ion bombardments. We also find that spectra with high ratios of the H2O ice absorption to silicate mass column density tend to indicate low mass fractions of amorphous pyroxene and crystalline forsterite, which is consistent with the scenario of the thermal dust processing close to the nucleus.
Key words: dust, extinction / infrared: galaxies / galaxies: nuclei
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.