Issue |
A&A
Volume 650, June 2021
|
|
---|---|---|
Article Number | A82 | |
Number of page(s) | 15 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202140616 | |
Published online | 09 June 2021 |
Improved large-scale interstellar dust foreground model and CMB solar dipole measurement
1
Laboratoire d’Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, Ifremer, IRD, Brest, France
e-mail: jean.marc.delouis@ifremer.fr
2
Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay Cedex, France
3
Ecole Normale Supérieure, Sorbonne Université, Observatoire de Paris, Université PSL, École Normale Supérieure, CNRS, Paris, France
Received:
19
February
2021
Accepted:
7
March
2021
The cosmic microwave background (CMB) anisotropies are difficult to measure at large angular scales. In this paper, we present a new analysis of the Planck High Frequency Instrument data that brings the cosmological part and its major foreground signal close to the detector noise. The solar dipole signal induced by the motion of the Solar System with respect to the CMB is a very efficient tool for calibrating a detector or cross-calibrating sets of detectors with high accuracy. In this work, the solar dipole signal is used to extract corrections of the frequency map offsets, reducing uncertainties significantly. The solar dipole parameters are refined together with the improvement of the high-frequency foregrounds and the CMB large-scale cosmological anisotropies. The stability of the solar dipole parameters is a powerful way to control Galactic foreground removal in the component separation process. We use this stability to build a model of the spatial variations in spectral energy distribution of the interstellar dust emission. Knowledge of these variations will help future CMB analyses of intensity and polarization used to measure faint signals related to the optical reionization depth and the tensor-to-scalar ratio of the primordial anisotropies. The results of this work are: improved solar dipole parameters, a new interstellar dust model, and a large-scale intensity map of cosmological anisotropies.
Key words: surveys / cosmic background radiation / diffuse radiation / methods: data analysis / dust, extinction
© J.-M. Delouis et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.