Issue |
A&A
Volume 650, June 2021
|
|
---|---|---|
Article Number | A53 | |
Number of page(s) | 28 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202039159 | |
Published online | 07 June 2021 |
Magnetic signatures on mixed-mode frequencies
I. An axisymmetric fossil field inside the core of red giants
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
2
Flatiron Institute, Simons Foundation, 162 Fifth Ave, New York, NY 10010, USA
e-mail: lbugnet@flatironinstitute.org
3
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
4
Universidad de La Laguna, Dpto. de Astrofísica, 38205 La Laguna, Tenerife, Spain
5
University of Exeter, Department of Physics and Astronomy, Stoker Road, Devon, Exeter EX4 4GL, UK
6
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 Place Jules Janssen, 92195 Meudon, France
Received:
11
August
2020
Accepted:
2
March
2021
Context. The discovery of moderate differential rotation between the core and the envelope of evolved solar-like stars could be the signature of a strong magnetic field trapped inside the radiative interior. The population of intermediate-mass red giants presenting surprisingly low-amplitude mixed modes (i.e. oscillation modes that behave as acoustic modes in their external envelope and as gravity modes in their core) could also arise from the effect of an internal magnetic field. Indeed, stars more massive than about 1.1 solar masses are known to develop a convective core during their main sequence. The field generated by the dynamo triggered by this convection could be the progenitor of a strong fossil magnetic field trapped inside the core of the star for the remainder of its evolution.
Aims. Observations of mixed modes can constitute an excellent probe of the deepest layers of evolved solar-like stars, and magnetic fields in those regions can impact their propagation. The magnetic perturbation on mixed modes may therefore be visible in asteroseismic data. To unravel which constraints can be obtained from observations, we theoretically investigate the effects of a plausible mixed axisymmetric magnetic field with various amplitudes on the mixed-mode frequencies of evolved solar-like stars.
Methods. First-order frequency perturbations due to an axisymmetric magnetic field were computed for dipolar and quadrupolar mixed modes. These computations were carried out for a range of stellar ages, masses, and metallicities.
Conclusions. We show that typical fossil-field strengths of 0.1 − 1 MG, consistent with the presence of a dynamo in the convective core during the main sequence, provoke significant asymmetries on mixed-mode frequency multiplets during the red giant branch. We provide constraints and methods for the detectability of such magnetic signatures. We show that these signatures may be detectable in asteroseismic data for field amplitudes small enough for the amplitude of the modes not to be affected by the conversion of gravity into Alfvén waves inside the magnetised interior. Finally, we infer an upper limit for the strength of the field and the associated lower limit for the timescale of its action in order to redistribute angular momentum in stellar interiors.
Key words: stars: oscillations / stars: magnetic field / stars: interiors / stars: evolution / stars: rotation
© L. Bugnet et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.