Issue |
A&A
Volume 649, May 2021
|
|
---|---|---|
Article Number | A177 | |
Number of page(s) | 19 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202040235 | |
Published online | 01 June 2021 |
New constraints on the planetary system around the young active star AU Mic
Two transiting warm Neptunes near mean-motion resonance
1
Institut d’Astrophysique de Paris, CNRS, UMR 7095, Sorbonne Université,
98 bis bd Arago,
75014
Paris, France
e-mail: martioli@iap.fr
2
Laboratório Nacional de Astrofísica,
Rua Estados Unidos 154,
37504-364,
Itajubá - MG, Brazil
3
Observatoire de Haute Provence,
St Michel l’Observatoire, France
4
CFisUC, Department of Physics, University of Coimbra,
3004-516
Coimbra, Portugal
5
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL University, Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris, France
Received:
24
December
2020
Accepted:
27
March
2021
AU Microscopii (AU Mic) is a young, active star whose transiting planet was recently detected. Here, we report our analysis of its TESS light curve, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and planetary transits. We measured a flare occurrence rate in AU Mic of 6.35 flares per day for flares with amplitudes in the range of 0.06% < fmax < 1.5% of the star flux. We employed a Bayesian Markov chain Monte Carlo analysis to model the five transits of AU Mic b observed by TESS, improving the constraints on the planetary parameters. The measured planet-to-star effective radius ratio of Rp∕R⋆ = 0.0496 ± 0.0007 implies a physical radius of 4.07 ± 0.17 R⊕ and a planet density of 1.4 ± 0.4 g cm−3, confirming that AU Mic b is a Neptune-size moderately inflated planet. While a single feature possibly due to a second planet was previously reported in the former TESS data, we report the detection of two additional transit-like events in the new TESS observations of July 2020. This represents substantial evidence for a second planet (AU Mic c) in the system. We analyzed its three available transits and obtained an orbital period of 18.859019 ± 0.000016 d and a planetary radius of 3.24 ± 0.16 R⊕, which defines AU Mic c as a warm Neptune-size planet with an expected mass in the range of 2.2 M⊕ < Mc < 25.0 M⊕, estimated from the population of exoplanets of similar sizes. The two planets in the AU Mic system are in near 9:4 mean-motion resonance. We show that this configuration is dynamically stable and should produce transit-timing variations (TTV). Our non-detection of significant TTV in AU Mic b suggests an upper limit for the mass of AU Mic c of <7 M⊕, indicating that this planet is also likely to be inflated. As a young multi-planet system with at least two transiting planets, AU Mic becomes a key system for the study of atmospheres of infant planets and of planet-planet and planet-disk dynamics at the early stages of planetary evolution.
Key words: planetary systems / stars: individual: AU Mic / stars: activity / techniques: photometric
© E. Martioli et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.