Issue |
A&A
Volume 649, May 2021
|
|
---|---|---|
Article Number | A26 | |
Number of page(s) | 29 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202039767 | |
Published online | 06 May 2021 |
Six transiting planets and a chain of Laplace resonances in TOI-178
1
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
Versoix, Switzerland
e-mail: adrien.leleu@unige.ch
2
Physikalisches Institut, University of Bern,
Gesellsschaftstrasse 6,
3012
Bern, Switzerland
3
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS, UK
4
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris, France
5
Aix Marseille Univ, CNRS, CNES, LAM,
Marseille, France
6
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
7
Centre for Exoplanets and Habitability, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
8
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
9
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
10
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
11
School of Physics and Astronomy, University of Leicester,
Leicester
LE1 7RH, UK
12
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto,
CAUP, Rua das Estrelas,
4150-762
Porto, Portugal
13
Centro de Astrofísica da Universidade do Porto,
Rua das Estrelas,
4150-762
Porto, Portugal
14
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre,
4169-007
Porto, Portugal
15
Instituto de Astrofísica de Canarias,
38200
La Laguna,
Tenerife, Spain
16
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna,
Tenerife, Spain
17
Camino El Observatorio 1515,
Las Condes,
Santiago, Chile
18
ETH Zürich, Institute for Particle Physics and Astrophysics,
Zurich, Switzerland
19
Institut de Ciències de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra, Spain
20
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
21
ESTEC, European Space Agency,
2201AZ,
Noordwijk, The Netherlands
22
Departmento de Astrofísica, Centro de Astrobiologia (CSIC-INTA), ESAC campus,
28692
Villanueva de la Cãda (Madrid), Spain
23
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz, Austria
24
Center for Space and Habitability,
Gesellsschaftstrasse 6,
3012
Bern, Switzerland
25
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
26
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm, Sweden
27
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
28
Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge,
MA
02139, USA
29
Admatis,
Miskok, Hungary
30
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris, France
31
CFisUC, Department of Physics, University of Coimbra,
3004-516
Coimbra, Portugal
32
INAF – Osservatorio Astronomico di Trieste,
via G. B. Tiepolo 11,
34143
Trieste, Italy
33
INAF – Osservatorio Astrofisico di Torino,
via Osservatorio 20,
10025
Pino Torinese, Italy
34
Lund Observatory, Dept. of Astronomy and Theoretical Physics, Lund University,
Box 43,
22100
Lund, Sweden
35
INAF, Istituto di Astrofisica e Planetologia Spaziali,
via del Fosso del Cavaliere 100,
00133
Roma, Italy
36
European Southern Observatory,
Alonso de Coórdova 3107,
Vitacura,
Región Metropolitana, Chile
37
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden, The Netherlands
38
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
43992
Onsala, Sweden
39
Dipartimento di Fisica, Università degli Studi di Torino,
via Pietro Giuria 1,
10125
Torino, Italy
40
Center for Astronomy and Astrophysics, Technical University Berlin,
Hardenberstrasse 36,
10623
Berlin, Germany
41
Astronomy Unit, Queen Mary University of London,
Mile End Road,
London
E1 4NS, UK
42
Cavendish Laboratory, JJ Thomson Avenue,
Cambridge
CB3 0HE, UK
43
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna, Austria
44
Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology,
Cambridge,
MA
02139, USA
45
Departamento de Astronomía, Universidad de Chile,
Camino El Observatorio 1515,
Las Condes,
Santiago, Chile
46
Centro de Astrofísica y Tecnologías Afines (CATA),
Casilla 36-D,
Santiago, Chile
47
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,
Av. Diagonal las Torres 2640,
Peñalolén,
Santiago, Chile
48
Millennium Institute for Astrophysics, Chile
49
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17, Hungary
50
Brorfelde Observatory,
Observator Gyldenkernes Vej 7,
4340
Tølløse, Denmark
51
DTU Space, National Space Institute, Technical University of Denmark,
Elektrovej 327,
2800
Lyngby, Denmark
52
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis blvd. Arago,
75014
Paris, France
53
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
54
Astrophysics Group, Keele University,
Staffordshire,
ST5 5BG, UK
55
Department of Physics, University of Warwick,
xsCoventry, UK
56
INAF – Osservatorio Astronomico di Palermo,
Piazza del Parlamento 1,
90134
Palermo, Italy
57
IFPU,
Via Beirut 2,
34151
Grignano Trieste, Italy
58
Instituto de Astronomía, Universidad Católica del Norte,
Angamos 0610,
Antofagasta, Chile
59
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa,
Campo Grande,
1749-016
Lisboa, Portugal
60
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna, Austria
61
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania, Italy
62
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova, Italy
63
Space Science Data Center, ASI, via del Politecnico snc,
00133
Roma, Italy
64
Departmentof Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
65
Fundación G. Galilei – INAF (Telescopio Nazionale Galileo),
Rambla J. A. Fernández Pérez 7,
38712
Breña Baja,
La Palma, Spain
66
INAF – Osservatorio Astronomico di Brera,
Via E. Bianchi 46,
23807
Merate, Italy
67
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin, Germany
68
Paris Observatory, LUTh UMR 8102,
92190
Meudon, France
69
School of Physics & Astronomy, University of Birmingham,
Edgbaston,
Birmingham,
B15 2TT, UK
70
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
71
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
72
INAF, Osservatorio Astronomico di Roma,
via Frascati 33,
00078
Monte Porzio Catone,
Roma, Italy
73
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge,
CB3 0HA, UK
74
Centro de Astrobiología (CSIC-INTA),
Crta. Ajalvir km 4,
28850
Torrejón de Ardoz,
Madrid, Spain
Received:
27
October
2020
Accepted:
14
December
2020
Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152−0.070+0.073 to 2.87−0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02−0.23+0.28 to 0.177−0.061+0.055 times the Earth’s density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.
Key words: techniques: photometric / techniques: spectroscopic / celestial mechanics / planets and satellites: detection / planets and satellites: dynamical evolution and stability
© A. Leleu et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.