Issue |
A&A
Volume 645, January 2021
|
|
---|---|---|
Article Number | A60 | |
Number of page(s) | 13 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/202037951 | |
Published online | 13 January 2021 |
INTEGRAL discovery of a high-energy tail in the microquasar Cygnus X-3
1
Lab AIM, CEA/CNRS/Université Paris-Saclay, Université de Paris, 91191 Gif-sur-Yvette, France
e-mail: floriane.cangemi@cea.fr, fcangemi@lpnhe.in2p3.fr
2
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
3
Dr. Karl Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany
Received:
13
March
2020
Accepted:
11
November
2020
Context. The X-ray spectra of X-ray binaries are dominated by emission of either soft or hard X-rays which defines their soft and hard spectral states. While the generic picture is relatively well understood, little is known about the interplay of the various media at work, or about the reasons why some sources do not follow common behavior. Cygnus X-3 is amongst the list of X-ray binaries that show quite complex behavior, with various distinct spectral states not seen in other sources. These states have been characterized in many studies. Because of its softness and intrinsic low flux above typically 50 keV, very little is known about the hard X/soft gamma-ray (100–1000 keV) emission in Cygnus X-3.
Aims. Using the whole INTEGRAL data base, we aim to explore the 3–1000 keV spectra of Cygnus X-3. This allows to probe this region with the highest sensitivity ever, and search for the potential signature of a high-energy non-thermal component as sometimes seen in other sources.
Methods. Our work is based on state classification carried out in previous studies with data from the Rossi X-Ray Timing Explorer. We extend this classification to the whole INTEGRAL data set in order to perform a long-term state-resolved spectral analysis. Six stacked spectra were obtained using 16 years of data from JEM-X (3–25 keV), ISGRI (25–300 keV), and SPI (20–400 keV).
Results. We extract stacked images in three different energy bands, and detect the source up to 200 keV. In the hardest states, our purely phenomenological approach clearly reveals the presence of an additonnal component > 50 keV in addition to the component usually interpreted as thermal Comptonization. We apply a more physical model of hybrid thermal/nonthermal corona (EQPAIR) to characterize this nonthermal component and compare our results with those of previous studies and analyses. Our modeling indicates a more efficient acceleration of electrons in states where major ejections are observed. We also evaluate and find a dependence of the photon index of the power law as a function of the strong orbital modulation of the source in the Flaring InterMediate state. This dependence could be due to a higher absorption when Cygnus X-3 is behind its companion. However, the uncertainties on the density column prevent us from drawing any firm conclusions.
Key words: accretion / accretion disks / black hole physics / radiation mechanisms: non-thermal / X-rays: binaries / stars: black holes / X-rays: individuals: Cygnus X-3
© F. Cangemi et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.