Issue |
A&A
Volume 644, December 2020
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 11 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202038750 | |
Published online | 30 November 2020 |
Inference of the chromospheric magnetic field configuration of solar plage using the Ca II 8542 Å line
Institute for Solar Physics, Dept. of Astronomy, Stockholm University, Albanova University Centre, 106 91 Stockholm, Sweden
e-mail: alex.pietrow@astro.su.se
Received:
25
June
2020
Accepted:
21
September
2020
Context. It has so far proven impossible to reproduce all aspects of the solar plage chromosphere in quasi-realistic numerical models. The magnetic field configuration in the lower atmosphere is one of the few free parameters in such simulations. The literature only offers proxy-based estimates of the field strength, as it is difficult to obtain observational constraints in this region. Sufficiently sensitive spectro-polarimetric measurements require a high signal-to-noise ratio, spectral resolution, and cadence, which are at the limit of current capabilities.
Aims. We use critically sampled spectro-polarimetric observations of the Ca II 8542 Å line obtained with the CRISP instrument of the Swedish 1-m Solar Telescope to study the strength and inclination of the chromospheric magnetic field of a plage region. This will provide direct physics-based estimates of these values, which could aid modelers to put constraints on plage models.
Methods. We increased the signal-to-noise ratio of the data by applying several methods including deep learning and PCA. We estimated the noise level to be 1 × 10−3 Ic. We then used STiC, a non-local thermodynamic equilibrium inversion code to infer the atmospheric structure and magnetic field pixel by pixel.
Results. We are able to infer the magnetic field strength and inclination for a plage region and for fibrils in the surrounding canopy. In the plage we report an absolute field strength of |B| = 440 ± 90 G, with an inclination of 10° ±16° with respect to the local vertical. This value for |B| is roughly double of what was reported previously, while the inclination matches previous studies done in the photosphere. In the fibrillar region we found |B| = 300 ± 50 G, with an inclination of 50° ±13°.
Key words: Sun: faculae, plages / Sun: magnetic fields / Sun: chromosphere / methods: observational
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.