Issue |
A&A
Volume 643, November 2020
|
|
---|---|---|
Article Number | A88 | |
Number of page(s) | 20 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202038066 | |
Published online | 06 November 2020 |
Creating and using large grids of precalculated model atmospheres for a rapid analysis of stellar spectra
1
Environmental Physics Laboratory (EPHYSLAB), Facultad de Ciencias, Campus de Ourense, Universidad de Vigo, Ourense 32004, Spain
2
Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional s/n, Edificio 9, Gustavo A. Madero, San Pedro Zacatenco, 07738 Ciudad de México, Mexico
e-mail: jzsargo@ipn.mx
3
Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca km. 36.5, La Marquesa, 52750 Ocoyoacac, Estado de México, Mexico
4
Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Alvaro Obregon, Lomas de Santa Fe, 01219 Ciudad de México, Mexico
5
Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 180, 02200
Ciudad de México, Mexico
6
Facultad de Ingeniería, Ciencias Físicas y Matemática, Universidad Central del Ecuador, Ciudadela Universitaria, Quito, Ecuador
7
Centro de Física, Universidad Central del Ecuador, Ciudadela Universitaria, Quito, Ecuador
Received:
29
March
2020
Accepted:
17
August
2020
Aims. We present a database of 43 340 atmospheric models (∼80 000 models at the conclusion of the project) for stars with stellar masses between 9 and 120 M⊙, covering the region of the OB main-sequence and Wolf-Rayet stars in the Hertzsprung-Russell diagram.
Methods. The models were calculated using the ABACUS I supercomputer and the stellar atmosphere code CMFGEN.
Results. The parameter space has six dimensions: the effective temperature Teff, the luminosity L, the metallicity Z, and three stellar wind parameters: the exponent β, the terminal velocity V∞, and the volume filling factor Fcl. For each model, we also calculate synthetic spectra in the UV (900−2000 Å), optical (3500−7000 Å), and near-IR (10 000−40 000 Å) regions. To facilitate comparison with observations, the synthetic spectra can be rotationally broadened using ROTIN3, by covering v sin i velocities between 10 and 350 km s−1 with steps of 10 km s−1.
Conclusions. We also present the results of the reanalysis of ϵ Ori using our grid to demonstrate the benefits of databases of precalculated models. Our analysis succeeded in reproducing the best-fit parameter ranges of the original study, although our results favor the higher end of the mass-loss range and a lower level of clumping. Our results indirectly suggest that the resonance lines in the UV range are strongly affected by the velocity-space porosity, as has been suggested by recent theoretical calculations and numerical simulations.
Key words: stars: atmospheres / methods: data analysis / miscellaneous
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.