Issue |
A&A
Volume 643, November 2020
|
|
---|---|---|
Article Number | A18 | |
Number of page(s) | 17 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202037447 | |
Published online | 27 October 2020 |
Constraining the orientation of the spin axes of extrasolar minor bodies 1I/2017 U1 (‘Oumuamua) and 2I/Borisov
1
Universidad Complutense de Madrid, Ciudad Universitaria,
28040
Madrid,
Spain
e-mail: nbplanet@ucm.es
2
AEGORA Research Group, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria,
28040
Madrid,
Spain
Received:
5
January
2020
Accepted:
16
September
2020
Context. The orientation of the spin axis of a comet is defined by the values of its equatorial obliquity and its cometocentric longitude of the Sun at perihelion. These parameters can be computed from the components of the nongravitational force caused by outgassing if the cometary activity is well characterized. The trajectories of known interstellar bodies passing through the Solar System show nongravitational accelerations.
Aims. The spin-axis orientation of 1I/2017 U1 (‘Oumuamua) remains to be determined; for 2I/Borisov, the already released results are mutually exclusive. In both cases, the values of the components of the nongravitational force are relatively well constrained. Here, we investigate – within the framework of the forced precession model of a nonspherical cometary nucleus – the orientation of the spin axes of ‘Oumuamua and 2I/Borisov using public orbit determinations that consider outgassing.
Methods. We applied a Monte Carlo simulation using the covariance matrix method together with Monte Carlo random search techniques to compute the distributions of equatorial obliquities and cometocentric longitudes of the Sun at perihelion of ‘Oumuamua and 2I/Borisov from the values of the nongravitational parameters.
Results. We find that the equatorial obliquity of ‘Oumuamua could be about 93°, if it has a very prolate (fusiform) shape, or close to 16°, if it is very oblate (disk-like). Different orbit determinations of 2I/Borisov gave obliquity values of 59° and 90°. The distributions of cometocentric longitudes were in general multimodal.
Conclusions. Our calculations suggest that the most probable spin-axis direction of ‘Oumuamua in equatorial coordinates is (280°, +46°) if very prolate or (312°, −50°) if very oblate. Our analysis favors a prolate shape. For the orbit determinations of 2I/Borisov used here, we find most probable poles pointing near (275°, +65°) and (231°, +30°), respectively. Although our analysis favors an oblate shape for 2I/Borisov, a prolate one cannot be ruled out.
Key words: methods: data analysis / methods: numerical / celestial mechanics / comets: individual: 1I/2017 U1 (‘Oumuamua) / comets: general / comets: individual: 2I/Borisov
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.