Issue |
A&A
Volume 642, October 2020
The Solar Orbiter mission
|
|
---|---|---|
Article Number | A3 | |
Number of page(s) | 19 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/202038445 | |
Published online | 30 September 2020 |
The Solar Orbiter Science Activity Plan
Translating solar and heliospheric physics questions into action
1
European Space Agency, ESAC, Camino Bajo del Castillo s/n, Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spain
e-mail: yannis.zouganelis@esa.int
2
European Space Agency, ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands
3
Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 2077, USA
4
Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405 Orsay, France
5
Solar-Terrestrial Centre of Excellence – SIDC, Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180 Brussels, Belgium
6
RAL Space, STFC Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, UK
7
Department of Physics, Imperial College London, London SW7 2AZ, UK
8
Naval Research Laboratory, Space Science Division, Washington, DC 20375, USA
9
University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
10
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
11
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT, UK
12
Universidad de Alcalá, Space Research Group, 28805 Alcalá de Henares, Spain
13
Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Largo E. Fermi 2, 50125 Firenze, Italy
14
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
15
School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do 446-701, Republic of Korea
16
INAF Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese, Italy
17
Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Metaxa and Vas. Pavlou St., Penteli, 15236 Athens, Greece
18
INAF Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
19
Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Barcelona, Spain
20
Space Sciences Laboratory and Physics Department, University of California, Berkeley, USA
21
Instituto de Astrofísica de Andalucía (IAA-CSIC), Apdo. de Correos 3004, 18080 Granada, Spain
22
LPP, CNRS, Ecole Polytechnique, Sorbonne Université, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
23
AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
24
INAF Istituto di Astrofisica e Planetologia Spaziale, Via Fosso del Cavaliere 100, 00133 Roma, Italy
25
Center for Astronomy and Astrophysics, Berlin Institute of Technology (Technische Universität Berlin), 10623 Berlin, Germany
26
Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX 78238, USA
27
School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
28
IRAP, Université de Toulouse, CNRS, CNES, UPS, 31028 Toulouse, France
29
CNR-IFN LUXOR, Via Trasea 7, 35131 Padova, Italy
30
INAF Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
31
LPC2E, UMR7328 CNRS and University of Orléans, 3a av. de la recherche scientifique, Orléans, France
32
ESA Science and Operations Department, c/o NASA/GSFC Code 671, Greenbelt, MD 20771, USA
33
NASA Headquarters, Washington, DC 20546, USA
34
Research Center for Astronomy and Applied Mathematics of the Academy of Athens, 11527 Athens, Greece
35
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
36
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, 7260 Davos Dorf, Switzerland
37
ETH-Zürich, IPA, Hönggerberg campus, Zürich, Switzerland
38
Southwest Research Institute, 1050 Walnut Street, Boulder, CO, USA
39
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
40
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
41
Centre for mathematical Plasma-Astrophysics, Celestijnenlaan 200B, 3001 Leuven, KU Leuven, Belgium
42
Swedish Institute of Space Physics, Uppsala, Sweden
43
SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
44
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
45
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
46
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
47
Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA, USA 92121
48
School of Physics, Trinity College Dublin, Dublin 2, Ireland
49
School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin D02 XF85, Ireland
50
National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303, USA
51
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
52
Physics Department, University of Ioannina, Ioannina 45110, Greece
53
Department of Meteorology, University of Reading, RG6 6BB Earley, UK
54
INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
55
ASI – Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
56
Chair for RF-Engineering, Technische Universität Dresden, 01069 Dresden, Germany
57
Centre Spatial de Liège, Université de Liège, Av. du Pré-Aily, 4031 Angleur, Belgium
58
Leibniz-Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany
59
CNR – Istituto per la Scienza e Tecnologia dei Plasmi, Via Amendola 122/D, 70126 Bari, Italy
60
Departamento de Física, Escuela Politécnica Nacional, Ladrón de Guevara 253, 170517 Quito, Ecuador
61
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czechia
62
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
63
Astronomical Institute, Czech Academy of Sciences, Prague, Czechia
64
Division for Extraterrestrial Physics, Institute for Experimental and Applied Physics (IEAP), Christian Albrechts University at Kiel, Leibnizstr. 11, 24118 Kiel, Germany
65
Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain
66
Dipartimento di Fisica, Università della Calabria, 87036 Rende, CS, Italy
67
Space and Plasma Physics, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
68
Radboud Radio Lab, Department of Astrophysics, IMAPP-Radboud University, 6500 GL Nijmegen, The Netherlands
69
Space Science Center, University of New Hampshire, 8 College Road, Durham, NH 03824, USA
70
Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
Received:
19
May
2020
Accepted:
19
August
2020
Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission’s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit’s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter’s SAP through a series of examples and the strategy being followed.
Key words: space vehicles: instruments / methods: observational / Sun: general
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.