Issue |
A&A
Volume 642, October 2020
|
|
---|---|---|
Article Number | A128 | |
Number of page(s) | 17 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202038370 | |
Published online | 13 October 2020 |
Temporal evolution of short-lived penumbral microjets
1
Instituto de Astrofísica de Andalucía (IAA-CSIC), Apdo. 3004, 18080 Granada, Spain
e-mail: siu@iaa.es; azaymisiu@gmail.com
2
Univ Coimbra, CITEUC – Center for Earth and Space Research of the University of Coimbra, Geophysical and Astronomical Observatory, Coimbra 3040-004, Portugal
Received:
7
May
2020
Accepted:
28
July
2020
Context. Penumbral microjets (PMJs) is the name given to elongated jet-like brightenings observed in the chromosphere above sunspot penumbrae. They are transient events that last from a few seconds to several minutes, and their origin is presumed to be related to magnetic reconnection processes. Previous studies have mainly focused on their morphological and spectral characteristics, and more recently on their spectropolarimetric signals during the maximum brightness stage. Studies addressing the temporal evolution of PMJs have also been carried out, but they are based on spatial and spectral time variations only.
Aims. Here we investigate, for the first time, the temporal evolution of the polarization signals produced by short-lived PMJs (lifetimes < 2 min) to infer how the magnetic field vector evolves in the upper photosphere and mid-chromosphere.
Methods. We use fast-cadence spectropolarimetric observations of the Ca II 854.2 nm line taken with the CRisp Imaging Spectropolarimeter at the Swedish 1 m Solar Telescope. The weak-field approximation (WFA) is used to estimate the strength and inclination of the magnetic field vector. By separating the Ca II 854.2 nm line into two different wavelength domains to account for the chromospheric origin of the line core and the photospheric contribution to the wings, we infer the height variation of the magnetic field vector.
Results. The WFA reveals larger magnetic field changes in the upper photosphere than in the chromosphere during the PMJ maximum brightness stage. In the photosphere, the magnetic field inclination and strength undergo a transient increase for most PMJs, but in 25% of the cases the field strength decreases during the brightening. In the chromosphere, the magnetic field tends to be slightly stronger during the PMJs.
Conclusions. The propagation of compressive perturbation fronts followed by a rarefaction phase in the aftershock region may explain the observed behavior of the magnetic field vector. The fact that such behavior varies among the analyzed PMJs could be a consequence of the limited temporal resolution of the observations and the fast-evolving nature of the PMJs.
Key words: sunspots / Sun: chromosphere / Sun: magnetic fields
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.