Issue |
A&A
Volume 642, October 2020
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 13 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202038085 | |
Published online | 06 October 2020 |
Effect of pebble flux-regulated planetesimal formation on giant planet formation
1
Max Planck Institute for Astronomy, Heidelberg,
Königstuhl 17,
69117
Heidelberg, Germany
e-mail: voelkel@mpia.de
2
Physikalisches Institut, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
3
Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd.,
Tucson,
AZ
85721, USA
Received:
3
April
2020
Accepted:
26
June
2020
Context. The formation of gas giant planets by the accretion of 100 km diameter planetesimals is often thought to be inefficient. A diameter of this size is typical for planetesimals and results from self-gravity. Many models therefore use small kilometer-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals that are distributed radially in a minimum-mass solar-nebula way.
Aims. We use a dynamical model for planetesimal formation to investigate the effect of various initial radial density distributions on the resulting planet population. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the subsequent planet formation.
Methods. We implemented a two-population model for solid evolution and a pebble flux-regulated model for planetesimal formation in our global model for planet population synthesis. This framework was used to study the global effect of planetesimal formation on planet formation. As reference, we compared our dynamically formed planetesimal surface densities with ad hoc set distributions of different radial density slopes of planetesimals.
Results. Even though required, it is not the total planetesimal disk mass alone, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals that enables planetary growth through planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth.
Conclusions. Pebble flux-regulated planetesimal formation strongly boosts planet formation even when the planetesimals to be accreted are 100 km in size because it is a highly effective mechanism for creating a steep planetesimal density profile. We find that this leads to the formation of giant planets inside 1 au already by pure 100 km planetesimal accretion. Eventually, adding pebble accretion regulated by pebble flux and planetesimal-based embryo formation as well will further complement this picture.
Key words: protoplanetary disks / planets and satellites: formation
© O. Voelkel et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.