Issue |
A&A
Volume 642, October 2020
|
|
---|---|---|
Article Number | A65 | |
Number of page(s) | 17 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201936649 | |
Published online | 07 October 2020 |
Coevolution of black hole accretion and star formation in galaxies up to z = 3.5
1
Instituto de Física y Astronomía, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
e-mail: carrarorosamaria@gmail.com
2
Dipartimento di Fisica e Astronomia, Università di Padova, Vicolo dell’Osservatorio, 3, 35122 Padova, Italy
3
INAF Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy
4
Dipartimento di Fisica e Astronomia, Università di Bologna, via Gobetti 93/2, 40129 Bologna, Italy
5
INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti, 93/3, 40129 Bologna, Italy
6
Department of Physics and Astronomy, University of Southampton, Highfield SO17 1BJ, UK
7
CEA, IRFU, DAp, AIM, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, CNRS, 91191 Gif-sur-Yvette, France
8
Physics & Astronomy Dept., University of Hawaii at Hilo., 200 W. Kawili St., Hilo, HI 96720, USA
9
Physics Dept., Carnegie Mellon University, Pittsburgh, PA 15213, USA
10
Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634, USA
11
School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
12
Center for Extragalactic Astronomy, Durham University, South Road, Durham DH1 3LE, UK
13
European Southern Observatory, Alonso de Cordova 3107, Casilla 19, Santiago 19001, Chile
14
Subaru Telescope, National Astronomical Observatory of Japan (NAOJ), 650 North A’ohoku place, Hilo, HI 96720, USA
Received:
6
September
2019
Accepted:
20
July
2020
Aims. We study the coevolution between the black hole accretion rate (BHAR) and the star formation rate (SFR) in different phases of galaxy life: main-sequence star-forming galaxies, quiescent galaxies, and starburst galaxies at different cosmic epochs.
Methods. We exploited the unique combination of depth and area in the COSMOS field and took advantage of the X-ray data from the Chandra COSMOS-Legacy survey and the extensive multiwavelength ancillary data presented in the COSMOS2015 catalog, including in particular the UVista Ultra-deep observations. These large datasets allowed us to perform an X-ray stacking analysis and combine it with detected sources in a broad redshift interval (0.1 < z < 3.5) with unprecedented statistics for normal star-forming, quiescent, and starburst galaxies. The X-ray luminosity was used to predict the black holeAR, and a similar stacking analysis on far-infrared Herschel maps was used to measure the corresponding obscured SFR for statistical samples of sources in different redshifts and stellar mass bins.
Results. We focus on the evolution of the average SFR-stellar mass (M*) relation and compare it with the BHAR-M* relation. This extends previous works that pointed toward the existence of almost linear correlations in both cases. We find that the ratio between BHAR and SFR does not evolve with redshift, although it depends on stellar mass. For the star-forming populations, this dependence on M* has a logarithmic slope of ∼0.6 and for the starburst sample, the slope is ∼0.4. These slopes are both at odds with quiescent sources, where the dependence remains constant (log(BHAR/SFR) ∼ −3.4). By studying the specific BHAR and specific SFR, we find signs of downsizing for M* and black hole mass (MBH) in galaxies in all evolutionary phases. The increase in black hole mass-doubling timescale was particularly fast for quiescents, whose super-massive black holes grew at very early times, while accretion in star-forming and starburst galaxies continued until more recent times.
Conclusions. Our results support the idea that the same physical processes feed and sustain star formation and black hole accretion in star-forming galaxies while the starburst phase plays a lesser role in driving the growth of the supermassive black holes, especially at high redshift. Our integrated estimates of the M* − MBH relation at all redshifts are consistent with independent determinations of the local M* − MBH relation for samples of active galactic nuclei. This adds key evidence that the evolution in the BHAR/SFR is weak and its normalization is relatively lower than that of local dynamical M* − MBH relations.
Key words: galaxies: evolution / galaxies: active / galaxies: starburst / galaxies: star formation / X-rays: galaxies
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.